

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Алфавитный указатель

	# Callback
	<?php
require_once „vendorautoload.php“;

use VkEasySdkMethodsBot;
use VkEasySdkVkCallback;

$callback = new VkCallback(„токен бота“, „строка подтверждения“);

	$callback->event(„message_new“, function (Bot $bot, object $object, int $group_id) {
	
	if($bot->rules()->commandRule([„stop“, „start“], [„/“, „!“])) {
	$bot->reply(„Отреагировал на команду /start или !start ну или /stop !stop“);

	} elseif($bot->rules()->attachmentsRule([„photo“, „video“])) {
	$bot->reply(„Вы прислали мне фото и|или видео!“);

}

$bot->answer(„Привет мир, ты так прекрасен!“);

});

$callback->listener(true);

Состояния (State)

	class MainState {
	use State;

private array $states = [„name“, „age“, „sex“];

	protected function getStates(): array {
	return $this->states;

}

}

$callback = new VkCallback($token, $confirmation, $secret, $group_id);

	$callback->event(„message_new“, function (Bot $bot, $object, $group_id) {
	$state = new MainState($object);

	if($bot->rules()->commandRule(„start“, [„/“, „!“]) && $state->isCurrent(„*“)) {
	$bot->answer(„Введите ваше имя“);
$state->first();

	} elseif($state->isCurrent(„name“)) {
	$bot->answer(„Введите ваш возраст“);
$state->next($object->message->text);

	} elseif($state->isCurrent(„age“)) {
	$bot->answer(„Введите ваш пол“);
$state->next($object->message->text);

	} else {
	$state->finish($object->message->text);
$bot->answer(„Спасибо „.json_encode($state->getData()));

}

});

$callback->listener(true);

	# Правила (Rules)
	$bot->rules()->commandRule([„stop“, „start“], [„/“, „!“]) или $bot->rules()->commandRule(„start“, [„/“, „!“])
$bot->rules()->attachmentsRule([„photo“, „video“]) или $bot->rules()->attachmentsRule(„photo“)
$bot->rules()->peerRule()
$bot->rules()->stickerRule() или $bot->rules()->stickerRule(12719234)
$bot->rules()->messageLengthRule(15)

Клавиатура (Keyboard)
![Клавиатура](image/img.png)
![Клавиатура](image/img_1.png)

use VkEasySdkKeyboardKeyboard;
use VkEasySdkKeyboardButtonsColor;
use VkEasySdkKeyboardButtonsCallbackButton;
use VkEasySdkKeyboardButtonsLinkButton;
use VkEasySdkKeyboardButtonsLocationButton;
use VkEasySdkKeyboardButtonsPayButton;
use VkEasySdkKeyboardButtonsTextButton;

$keyboard = new Keyboard();
$k = $keyboard

->create(inline: true)
->add(new TextButton(„Text button“, Color::POSITIVE, [„button“ => „one“]))
->add(new LinkButton(„Нажми меня“, „https://github.com/YoppiDev/VkEasySdk“, payload: [„button“ => „two“]))
->row()
->add(new CallbackButton(„Callback кнопка“, Color::PRIMARY, [„callback“ => „done“]))
->add(new LocationButton([„callback“ => „done“]))
->add(new PayButton(„hash“, [„button“ => „pay“]))
->json();

DATABASE

Инициализация

$database = new VkEasySdkWrappersDatabase();
$database->connect(„mysql“, „127.0.0.1“, „root“, „“, „test“);

Префикс таблиц

$database->setPrefix(„myprefix“);

В результате sql запрос будет выглядеть так SELECT FROM myprefix_test, DELETE FROM myprefix_test и т.д.

Выполнение sql запросов

	$result = $database->query(„SELECT * FROM test WHERE id = :id“, [
	„id“ => 1

])->fetch();

или

$result = $database->query(„SELECT * FROM table WHERE id = 5“)->fetch();

Функция query возвращает объект PDOStatement

INSERT

	$result = $database->multi_insert(„test“, [
	„name“ => „Лешка“,
„warnings“ => 0,

]);

Эквивалентно запросу

INSERT INTO test (name, warnings) VALUES (?,?)

Вы так же можете при необходимости добавлять сразу множество записей в таблицу

	$result = $database->multiInsert(„test“, [
	[„name“ => „Лешка“, „warnings“ => 0],
[„name“ => „Васька“, „warnings“ => 1],
[„name“ => „Петька“, „warnings“ => 1],

]);

UPDATE

$database->update(„test“, [„name“ => «Петро», „warnings“ => 0], [„id“ => 8,“name“ => «Валентин»]);

Эквивалентно запросу

UPDATE test SET name=:name, warnings=:warnings WHERE id=:id2 AND name=:name2

 # Change Log

Please refer to [UPGRADING](UPGRADING.md) guide for upgrading to a major version.

7.4.2 - 2022-03-20

Fixed

	Remove curl auth on cross-domain redirects to align with the Authorization HTTP header

	Reject non-HTTP schemes in StreamHandler

	Set a default ssl.peer_name context in StreamHandler to allow force_ip_resolve

7.4.1 - 2021-12-06

Changed

	Replaced implicit URI to string coercion [#2946](https://github.com/guzzle/guzzle/pull/2946)

	Allow symfony/deprecation-contracts version 3 [#2961](https://github.com/guzzle/guzzle/pull/2961)

Fixed

	Only close curl handle if it’s done [#2950](https://github.com/guzzle/guzzle/pull/2950)

7.4.0 - 2021-10-18

Added

	Support PHP 8.1 [#2929](https://github.com/guzzle/guzzle/pull/2929), [#2939](https://github.com/guzzle/guzzle/pull/2939)

	Support psr/log version 2 and 3 [#2943](https://github.com/guzzle/guzzle/pull/2943)

Fixed

	Make sure we always call restore_error_handler() [#2915](https://github.com/guzzle/guzzle/pull/2915)

	Fix progress parameter type compatibility between the cURL and stream handlers [#2936](https://github.com/guzzle/guzzle/pull/2936)

	Throw InvalidArgumentException when an incorrect headers array is provided [#2916](https://github.com/guzzle/guzzle/pull/2916), [#2942](https://github.com/guzzle/guzzle/pull/2942)

Changed

	Be more strict with types [#2914](https://github.com/guzzle/guzzle/pull/2914), [#2917](https://github.com/guzzle/guzzle/pull/2917), [#2919](https://github.com/guzzle/guzzle/pull/2919), [#2945](https://github.com/guzzle/guzzle/pull/2945)

7.3.0 - 2021-03-23

Added

	Support for DER and P12 certificates [#2413](https://github.com/guzzle/guzzle/pull/2413)

	Support the cURL (http://) scheme for StreamHandler proxies [#2850](https://github.com/guzzle/guzzle/pull/2850)

	Support for guzzlehttp/psr7:^2.0 [#2878](https://github.com/guzzle/guzzle/pull/2878)

Fixed

	Handle exceptions on invalid header consistently between PHP versions and handlers [#2872](https://github.com/guzzle/guzzle/pull/2872)

7.2.0 - 2020-10-10

Added

	Support for PHP 8 [#2712](https://github.com/guzzle/guzzle/pull/2712), [#2715](https://github.com/guzzle/guzzle/pull/2715), [#2789](https://github.com/guzzle/guzzle/pull/2789)

	Support passing a body summarizer to the http errors middleware [#2795](https://github.com/guzzle/guzzle/pull/2795)

Fixed

	Handle exceptions during response creation [#2591](https://github.com/guzzle/guzzle/pull/2591)

	Fix CURLOPT_ENCODING not to be overwritten [#2595](https://github.com/guzzle/guzzle/pull/2595)

	Make sure the Request always has a body object [#2804](https://github.com/guzzle/guzzle/pull/2804)

Changed

	The TooManyRedirectsException has a response [#2660](https://github.com/guzzle/guzzle/pull/2660)

	Avoid «functions» from dependencies [#2712](https://github.com/guzzle/guzzle/pull/2712)

Deprecated

	Using environment variable GUZZLE_CURL_SELECT_TIMEOUT [#2786](https://github.com/guzzle/guzzle/pull/2786)

7.1.1 - 2020-09-30

Fixed

	Incorrect EOF detection for response body streams on Windows.

Changed

	We dont connect curl sink on HEAD requests.

	Removed some PHP 5 workarounds

7.1.0 - 2020-09-22

Added

	GuzzleHttpMessageFormatterInterface

Fixed

	Fixed issue that caused cookies with no value not to be stored.

	On redirects, we allow all safe methods like GET, HEAD and OPTIONS.

	Fixed logging on empty responses.

	Make sure MessageFormatter::format returns string

Deprecated

	All functions in GuzzleHttp has been deprecated. Use static methods on Utils instead.

	ClientInterface::getConfig()

	Client::getConfig()

	Client::__call()

	Utils::defaultCaBundle()

	CurlFactory::LOW_CURL_VERSION_NUMBER

7.0.1 - 2020-06-27

	Fix multiply defined functions fatal error [#2699](https://github.com/guzzle/guzzle/pull/2699)

7.0.0 - 2020-06-27

No changes since 7.0.0-rc1.

7.0.0-rc1 - 2020-06-15

Changed

	Use error level for logging errors in Middleware [#2629](https://github.com/guzzle/guzzle/pull/2629)

	Disabled IDN support by default and require ext-intl to use it [#2675](https://github.com/guzzle/guzzle/pull/2675)

7.0.0-beta2 - 2020-05-25

Added

	Using Utils class instead of functions in the GuzzleHttp namespace. [#2546](https://github.com/guzzle/guzzle/pull/2546)

	ClientInterface::MAJOR_VERSION [#2583](https://github.com/guzzle/guzzle/pull/2583)

Changed

	Avoid the getenv function when unsafe [#2531](https://github.com/guzzle/guzzle/pull/2531)

	Added real client methods [#2529](https://github.com/guzzle/guzzle/pull/2529)

	Avoid functions due to global install conflicts [#2546](https://github.com/guzzle/guzzle/pull/2546)

	Use Symfony intl-idn polyfill [#2550](https://github.com/guzzle/guzzle/pull/2550)

	Adding methods for HTTP verbs like Client::get(), Client::head(), Client::patch() etc [#2529](https://github.com/guzzle/guzzle/pull/2529)

	ConnectException extends TransferException [#2541](https://github.com/guzzle/guzzle/pull/2541)

	Updated the default User Agent to «GuzzleHttp/7» [#2654](https://github.com/guzzle/guzzle/pull/2654)

Fixed

	Various intl icu issues [#2626](https://github.com/guzzle/guzzle/pull/2626)

Removed

	Pool option pool_size [#2528](https://github.com/guzzle/guzzle/pull/2528)

7.0.0-beta1 - 2019-12-30

The diff might look very big but 95% of Guzzle users will be able to upgrade without modification.
Please see [the upgrade document](UPGRADING.md) that describes all BC breaking changes.

Added

	Implement PSR-18 and dropped PHP 5 support [#2421](https://github.com/guzzle/guzzle/pull/2421) [#2474](https://github.com/guzzle/guzzle/pull/2474)

	PHP 7 types [#2442](https://github.com/guzzle/guzzle/pull/2442) [#2449](https://github.com/guzzle/guzzle/pull/2449) [#2466](https://github.com/guzzle/guzzle/pull/2466) [#2497](https://github.com/guzzle/guzzle/pull/2497) [#2499](https://github.com/guzzle/guzzle/pull/2499)

	IDN support for redirects [2424](https://github.com/guzzle/guzzle/pull/2424)

Changed

	Dont allow passing null as third argument to BadResponseException::__construct() [#2427](https://github.com/guzzle/guzzle/pull/2427)

	Use SAPI constant instead of method call [#2450](https://github.com/guzzle/guzzle/pull/2450)

	Use native function invocation [#2444](https://github.com/guzzle/guzzle/pull/2444)

	Better defaults for PHP installations with old ICU lib [2454](https://github.com/guzzle/guzzle/pull/2454)

	Added visibility to all constants [#2462](https://github.com/guzzle/guzzle/pull/2462)

	Dont allow passing null as URI to Client::request() and Client::requestAsync() [#2461](https://github.com/guzzle/guzzle/pull/2461)

	Widen the exception argument to throwable [#2495](https://github.com/guzzle/guzzle/pull/2495)

Fixed

	Logging when Promise rejected with a string [#2311](https://github.com/guzzle/guzzle/pull/2311)

Removed

	Class SeekException [#2162](https://github.com/guzzle/guzzle/pull/2162)

	RequestException::getResponseBodySummary() [#2425](https://github.com/guzzle/guzzle/pull/2425)

	CookieJar::getCookieValue() [#2433](https://github.com/guzzle/guzzle/pull/2433)

	uri_template() and UriTemplate [#2440](https://github.com/guzzle/guzzle/pull/2440)

	Request options save_to and exceptions [#2464](https://github.com/guzzle/guzzle/pull/2464)

6.5.2 - 2019-12-23

	idn_to_ascii() fix for old PHP versions [#2489](https://github.com/guzzle/guzzle/pull/2489)

6.5.1 - 2019-12-21

	Better defaults for PHP installations with old ICU lib [#2454](https://github.com/guzzle/guzzle/pull/2454)

	IDN support for redirects [#2424](https://github.com/guzzle/guzzle/pull/2424)

6.5.0 - 2019-12-07

	Improvement: Added support for reset internal queue in MockHandler. [#2143](https://github.com/guzzle/guzzle/pull/2143)

	Improvement: Added support to pass arbitrary options to curl_multi_init. [#2287](https://github.com/guzzle/guzzle/pull/2287)

	Fix: Gracefully handle passing null to the header option. [#2132](https://github.com/guzzle/guzzle/pull/2132)

	Fix: RetryMiddleware did not do exponential delay between retires due unit mismatch. [#2132](https://github.com/guzzle/guzzle/pull/2132)

	Fix: Prevent undefined offset when using array for ssl_key options. [#2348](https://github.com/guzzle/guzzle/pull/2348)

	Deprecated ClientInterface::VERSION

6.4.1 - 2019-10-23

	No guzzle.phar was created in 6.4.0 due expired API token. This release will fix that

	Added parent::__construct() to FileCookieJar and SessionCookieJar

6.4.0 - 2019-10-23

	Improvement: Improved error messages when using curl < 7.21.2 [#2108](https://github.com/guzzle/guzzle/pull/2108)

	Fix: Test if response is readable before returning a summary in RequestException::getResponseBodySummary() [#2081](https://github.com/guzzle/guzzle/pull/2081)

	Fix: Add support for GUZZLE_CURL_SELECT_TIMEOUT environment variable [#2161](https://github.com/guzzle/guzzle/pull/2161)

	Improvement: Added GuzzleHttpExceptionInvalidArgumentException [#2163](https://github.com/guzzle/guzzle/pull/2163)

	Improvement: Added GuzzleHttp_current_time() to use hrtime() if that function exists. [#2242](https://github.com/guzzle/guzzle/pull/2242)

	Improvement: Added curl’s appconnect_time in TransferStats [#2284](https://github.com/guzzle/guzzle/pull/2284)

	Improvement: Make GuzzleException extend Throwable wherever it’s available [#2273](https://github.com/guzzle/guzzle/pull/2273)

	Fix: Prevent concurrent writes to file when saving CookieJar [#2335](https://github.com/guzzle/guzzle/pull/2335)

	Improvement: Update MockHandler so we can test transfer time [#2362](https://github.com/guzzle/guzzle/pull/2362)

6.3.3 - 2018-04-22

	Fix: Default headers when decode_content is specified

6.3.2 - 2018-03-26

	Fix: Release process

6.3.1 - 2018-03-26

	Bug fix: Parsing 0 epoch expiry times in cookies [#2014](https://github.com/guzzle/guzzle/pull/2014)

	Improvement: Better ConnectException detection [#2012](https://github.com/guzzle/guzzle/pull/2012)

	Bug fix: Malformed domain that contains a «/» [#1999](https://github.com/guzzle/guzzle/pull/1999)

	Bug fix: Undefined offset when a cookie has no first key-value pair [#1998](https://github.com/guzzle/guzzle/pull/1998)

	Improvement: Support PHPUnit 6 [#1953](https://github.com/guzzle/guzzle/pull/1953)

	Bug fix: Support empty headers [#1915](https://github.com/guzzle/guzzle/pull/1915)

	Bug fix: Ignore case during header modifications [#1916](https://github.com/guzzle/guzzle/pull/1916)

	Minor code cleanups, documentation fixes and clarifications.

6.3.0 - 2017-06-22

	Feature: force IP resolution (ipv4 or ipv6) [#1608](https://github.com/guzzle/guzzle/pull/1608), [#1659](https://github.com/guzzle/guzzle/pull/1659)

	Improvement: Don’t include summary in exception message when body is empty [#1621](https://github.com/guzzle/guzzle/pull/1621)

	Improvement: Handle on_headers option in MockHandler [#1580](https://github.com/guzzle/guzzle/pull/1580)

	Improvement: Added SUSE Linux CA path [#1609](https://github.com/guzzle/guzzle/issues/1609)

	Improvement: Use class reference for getting the name of the class instead of using hardcoded strings [#1641](https://github.com/guzzle/guzzle/pull/1641)

	Feature: Added read_timeout option [#1611](https://github.com/guzzle/guzzle/pull/1611)

	Bug fix: PHP 7.x fixes [#1685](https://github.com/guzzle/guzzle/pull/1685), [#1686](https://github.com/guzzle/guzzle/pull/1686), [#1811](https://github.com/guzzle/guzzle/pull/1811)

	Deprecation: BadResponseException instantiation without a response [#1642](https://github.com/guzzle/guzzle/pull/1642)

	Feature: Added NTLM auth [#1569](https://github.com/guzzle/guzzle/pull/1569)

	Feature: Track redirect HTTP status codes [#1711](https://github.com/guzzle/guzzle/pull/1711)

	Improvement: Check handler type during construction [#1745](https://github.com/guzzle/guzzle/pull/1745)

	Improvement: Always include the Content-Length if there’s a body [#1721](https://github.com/guzzle/guzzle/pull/1721)

	Feature: Added convenience method to access a cookie by name [#1318](https://github.com/guzzle/guzzle/pull/1318)

	Bug fix: Fill CURLOPT_CAPATH and CURLOPT_CAINFO properly [#1684](https://github.com/guzzle/guzzle/pull/1684)

	Improvement: Use GuzzleHttpPromiserejection_for function instead of object init [#1827](https://github.com/guzzle/guzzle/pull/1827)

	Minor code cleanups, documentation fixes and clarifications.

6.2.3 - 2017-02-28

	Fix deprecations with guzzle/psr7 version 1.4

6.2.2 - 2016-10-08

	Allow to pass nullable Response to delay callable

	Only add scheme when host is present

	Fix drain case where content-length is the literal string zero

	Obfuscate in-URL credentials in exceptions

6.2.1 - 2016-07-18

	Address HTTP_PROXY security vulnerability, CVE-2016-5385:
https://httpoxy.org/

	Fixing timeout bug with StreamHandler:
https://github.com/guzzle/guzzle/pull/1488

	Only read up to Content-Length in PHP StreamHandler to avoid timeouts when
a server does not honor Connection: close.

	Ignore URI fragment when sending requests.

6.2.0 - 2016-03-21

	Feature: added GuzzleHttpjson_encode and GuzzleHttpjson_decode.
https://github.com/guzzle/guzzle/pull/1389

	Bug fix: Fix sleep calculation when waiting for delayed requests.
https://github.com/guzzle/guzzle/pull/1324

	Feature: More flexible history containers.
https://github.com/guzzle/guzzle/pull/1373

	Bug fix: defer sink stream opening in StreamHandler.
https://github.com/guzzle/guzzle/pull/1377

	Bug fix: do not attempt to escape cookie values.
https://github.com/guzzle/guzzle/pull/1406

	Feature: report original content encoding and length on decoded responses.
https://github.com/guzzle/guzzle/pull/1409

	Bug fix: rewind seekable request bodies before dispatching to cURL.
https://github.com/guzzle/guzzle/pull/1422

	Bug fix: provide an empty string to http_build_query for HHVM workaround.
https://github.com/guzzle/guzzle/pull/1367

6.1.1 - 2015-11-22

	Bug fix: Proxy::wrapSync() now correctly proxies to the appropriate handler
https://github.com/guzzle/guzzle/commit/911bcbc8b434adce64e223a6d1d14e9a8f63e4e4

	Feature: HandlerStack is now more generic.
https://github.com/guzzle/guzzle/commit/f2102941331cda544745eedd97fc8fd46e1ee33e

	Bug fix: setting verify to false in the StreamHandler now disables peer
verification. https://github.com/guzzle/guzzle/issues/1256

	Feature: Middleware now uses an exception factory, including more error
context. https://github.com/guzzle/guzzle/pull/1282

	Feature: better support for disabled functions.
https://github.com/guzzle/guzzle/pull/1287

	Bug fix: fixed regression where MockHandler was not using sink.
https://github.com/guzzle/guzzle/pull/1292

6.1.0 - 2015-09-08

	Feature: Added the on_stats request option to provide access to transfer
statistics for requests. https://github.com/guzzle/guzzle/pull/1202

	Feature: Added the ability to persist session cookies in CookieJars.
https://github.com/guzzle/guzzle/pull/1195

	Feature: Some compatibility updates for Google APP Engine
https://github.com/guzzle/guzzle/pull/1216

	Feature: Added support for NO_PROXY to prevent the use of a proxy based on
a simple set of rules. https://github.com/guzzle/guzzle/pull/1197

	Feature: Cookies can now contain square brackets.
https://github.com/guzzle/guzzle/pull/1237

	Bug fix: Now correctly parsing = inside of quotes in Cookies.
https://github.com/guzzle/guzzle/pull/1232

	Bug fix: Cusotm cURL options now correctly override curl options of the
same name. https://github.com/guzzle/guzzle/pull/1221

	Bug fix: Content-Type header is now added when using an explicitly provided
multipart body. https://github.com/guzzle/guzzle/pull/1218

	Bug fix: Now ignoring Set-Cookie headers that have no name.

	Bug fix: Reason phrase is no longer cast to an int in some cases in the
cURL handler. https://github.com/guzzle/guzzle/pull/1187

	Bug fix: Remove the Authorization header when redirecting if the Host
header changes. https://github.com/guzzle/guzzle/pull/1207

	Bug fix: Cookie path matching fixes
https://github.com/guzzle/guzzle/issues/1129

	Bug fix: Fixing the cURL body_as_string setting
https://github.com/guzzle/guzzle/pull/1201

	Bug fix: quotes are no longer stripped when parsing cookies.
https://github.com/guzzle/guzzle/issues/1172

	Bug fix: form_params and query now always uses the & separator.
https://github.com/guzzle/guzzle/pull/1163

	Bug fix: Adding a Content-Length to PHP stream wrapper requests if not set.
https://github.com/guzzle/guzzle/pull/1189

6.0.2 - 2015-07-04

	Fixed a memory leak in the curl handlers in which references to callbacks
were not being removed by curl_reset.

	Cookies are now extracted properly before redirects.

	Cookies now allow more character ranges.

	Decoded Content-Encoding responses are now modified to correctly reflect
their state if the encoding was automatically removed by a handler. This
means that the Content-Encoding header may be removed an the
Content-Length modified to reflect the message size after removing the
encoding.

	Added a more explicit error message when trying to use form_params and
multipart in the same request.

	Several fixes for HHVM support.

	Functions are now conditionally required using an additional level of
indirection to help with global Composer installations.

6.0.1 - 2015-05-27

	Fixed a bug with serializing the query request option where the &
separator was missing.

	Added a better error message for when body is provided as an array. Please
use form_params or multipart instead.

	Various doc fixes.

6.0.0 - 2015-05-26

	See the UPGRADING.md document for more information.

	Added multipart and form_params request options.

	Added synchronous request option.

	Added the on_headers request option.

	Fixed expect handling.

	No longer adding default middlewares in the client ctor. These need to be
present on the provided handler in order to work.

	Requests are no longer initiated when sending async requests with the
CurlMultiHandler. This prevents unexpected recursion from requests completing
while ticking the cURL loop.

	Removed the semantics of setting default to true. This is no longer
required now that the cURL loop is not ticked for async requests.

	Added request and response logging middleware.

	No longer allowing self signed certificates when using the StreamHandler.

	Ensuring that sink is valid if saving to a file.

	Request exceptions now include a «handler context» which provides handler
specific contextual information.

	Added GuzzleHttpRequestOptions to allow request options to be applied
using constants.

	$maxHandles has been removed from CurlMultiHandler.

	MultipartPostBody is now part of the guzzlehttp/psr7 package.

5.3.0 - 2015-05-19

	Mock now supports save_to

	Marked AbstractRequestEvent::getTransaction() as public.

	Fixed a bug in which multiple headers using different casing would overwrite
previous headers in the associative array.

	Added Utils::getDefaultHandler()

	Marked GuzzleHttpClient::getDefaultUserAgent as deprecated.

	URL scheme is now always lowercased.

6.0.0-beta.1

	Requires PHP >= 5.5

	Updated to use PSR-7
* Requires immutable messages, which basically means an event based system

owned by a request instance is no longer possible.

	Utilizing the [Guzzle PSR-7 package](https://github.com/guzzle/psr7).

	Removed the dependency on guzzlehttp/streams. These stream abstractions
are available in the guzzlehttp/psr7 package under the GuzzleHttpPsr7
namespace.

	Added middleware and handler system
* Replaced the Guzzle event and subscriber system with a middleware system.
* No longer depends on RingPHP, but rather places the HTTP handlers directly

in Guzzle, operating on PSR-7 messages.

	Retry logic is now encapsulated in GuzzleHttpMiddleware::retry, which
means the guzzlehttp/retry-subscriber is now obsolete.

	Mocking responses is now handled using GuzzleHttpHandlerMockHandler.

	Asynchronous responses
* No longer supports the future request option to send an async request.

Instead, use one of the *Async methods of a client (e.g., requestAsync,
getAsync, etc.).

	Utilizing GuzzleHttpPromise instead of React’s promise library to avoid
recursion required by chaining and forwarding react promises. See
https://github.com/guzzle/promises

	Added requestAsync and sendAsync to send request asynchronously.

	Added magic methods for getAsync(), postAsync(), etc. to send requests
asynchronously.

	Request options
* POST and form updates

	Added the form_fields and form_files request options.

	Removed the GuzzleHttpPost namespace.

	The body request option no longer accepts an array for POST requests.

	The exceptions request option has been deprecated in favor of the
http_errors request options.

	The save_to request option has been deprecated in favor of sink request
option.

	Clients no longer accept an array of URI template string and variables for
URI variables. You will need to expand URI templates before passing them
into a client constructor or request method.

	Client methods get(), post(), put(), patch(), options(), etc. are
now magic methods that will send synchronous requests.

	Replaced Utils.php with plain functions in functions.php.

	Removed GuzzleHttpCollection.

	Removed GuzzleHttpBatchResults. Batched pool results are now returned as
an array.

	Removed GuzzleHttpQuery. Query string handling is now handled using an
associative array passed into the query request option. The query string
is serialized using PHP’s http_build_query. If you need more control, you
can pass the query string in as a string.

	GuzzleHttpQueryParser has been replaced with the
GuzzleHttpPsr7parse_query.

5.2.0 - 2015-01-27

	Added AppliesHeadersInterface to make applying headers to a request based
on the body more generic and not specific to PostBodyInterface.

	Reduced the number of stack frames needed to send requests.

	Nested futures are now resolved in the client rather than the RequestFsm

	Finishing state transitions is now handled in the RequestFsm rather than the
RingBridge.

	Added a guard in the Pool class to not use recursion for request retries.

5.1.0 - 2014-12-19

	Pool class no longer uses recursion when a request is intercepted.

	The size of a Pool can now be dynamically adjusted using a callback.
See https://github.com/guzzle/guzzle/pull/943.

	Setting a request option to null when creating a request with a client will
ensure that the option is not set. This allows you to overwrite default
request options on a per-request basis.
See https://github.com/guzzle/guzzle/pull/937.

	Added the ability to limit which protocols are allowed for redirects by
specifying a protocols array in the allow_redirects request option.

	Nested futures due to retries are now resolved when waiting for synchronous
responses. See https://github.com/guzzle/guzzle/pull/947.

	«0» is now an allowed URI path. See
https://github.com/guzzle/guzzle/pull/935.

	Query no longer typehints on the $query argument in the constructor,
allowing for strings and arrays.

	Exceptions thrown in the end event are now correctly wrapped with Guzzle
specific exceptions if necessary.

5.0.3 - 2014-11-03

This change updates query strings so that they are treated as un-encoded values
by default where the value represents an un-encoded value to send over the
wire. A Query object then encodes the value before sending over the wire. This
means that even value query string values (e.g., «:») are url encoded. This
makes the Query class match PHP’s http_build_query function. However, if you
want to send requests over the wire using valid query string characters that do
not need to be encoded, then you can provide a string to Url::setQuery() and
pass true as the second argument to specify that the query string is a raw
string that should not be parsed or encoded (unless a call to getQuery() is
subsequently made, forcing the query-string to be converted into a Query
object).

5.0.2 - 2014-10-30

	Added a trailing rn to multipart/form-data payloads. See
https://github.com/guzzle/guzzle/pull/871

	Added a GuzzleHttpPool::send() convenience method to match the docs.

	Status codes are now returned as integers. See
https://github.com/guzzle/guzzle/issues/881

	No longer overwriting an existing application/x-www-form-urlencoded header
when sending POST requests, allowing for customized headers. See
https://github.com/guzzle/guzzle/issues/877

	Improved path URL serialization.

	No longer double percent-encoding characters in the path or query string if
they are already encoded.

	Now properly encoding the supplied path to a URL object, instead of only
encoding „ „ and „?“.

	Note: This has been changed in 5.0.3 to now encode query string values by
default unless the rawString argument is provided when setting the query
string on a URL: Now allowing many more characters to be present in the
query string without being percent encoded. See https://tools.ietf.org/html/rfc3986#appendix-A

5.0.1 - 2014-10-16

Bugfix release.

	Fixed an issue where connection errors still returned response object in
error and end events event though the response is unusable. This has been
corrected so that a response is not returned in the getResponse method of
these events if the response did not complete. https://github.com/guzzle/guzzle/issues/867

	Fixed an issue where transfer statistics were not being populated in the
RingBridge. https://github.com/guzzle/guzzle/issues/866

5.0.0 - 2014-10-12

Adding support for non-blocking responses and some minor API cleanup.

New Features

	Added support for non-blocking responses based on guzzlehttp/guzzle-ring.

	Added a public API for creating a default HTTP adapter.

	Updated the redirect plugin to be non-blocking so that redirects are sent
concurrently. Other plugins like this can now be updated to be non-blocking.

	Added a «progress» event so that you can get upload and download progress
events.

	Added GuzzleHttpPool which implements FutureInterface and transfers
requests concurrently using a capped pool size as efficiently as possible.

	Added hasListeners() to EmitterInterface.

	Removed GuzzleHttpClientInterface::sendAll and marked
GuzzleHttpClient::sendAll as deprecated (it’s still there, just not the
recommended way).

Breaking changes

The breaking changes in this release are relatively minor. The biggest thing to
look out for is that request and response objects no longer implement fluent
interfaces.

	Removed the fluent interfaces (i.e., return $this) from requests,
responses, GuzzleHttpCollection, GuzzleHttpUrl,
GuzzleHttpQuery, GuzzleHttpPostPostBody, and
GuzzleHttpCookieSetCookie. This blog post provides a good outline of
why I did this: https://ocramius.github.io/blog/fluent-interfaces-are-evil/.
This also makes the Guzzle message interfaces compatible with the current
PSR-7 message proposal.

	Removed «functions.php», so that Guzzle is truly PSR-4 compliant. Except
for the HTTP request functions from function.php, these functions are now
implemented in GuzzleHttpUtils using camelCase. GuzzleHttpjson_decode
moved to GuzzleHttpUtils::jsonDecode. GuzzleHttpget_path moved to
GuzzleHttpUtils::getPath. GuzzleHttpset_path moved to
GuzzleHttpUtils::setPath. GuzzleHttpbatch should now be
GuzzleHttpPool::batch, which returns an objectStorage. Using functions.php
caused problems for many users: they aren’t PSR-4 compliant, require an
explicit include, and needed an if-guard to ensure that the functions are not
declared multiple times.

	
	Rewrote adapter layer.
	
	Removing all classes from GuzzleHttpAdapter, these are now
implemented as callables that are stored in GuzzleHttpRingClient.

	Removed the concept of «parallel adapters». Sending requests serially or
concurrently is now handled using a single adapter.

	Moved GuzzleHttpAdapterTransaction to GuzzleHttpTransaction. The
Transaction object now exposes the request, response, and client as public
properties. The getters and setters have been removed.

	Removed the «headers» event. This event was only useful for changing the
body a response once the headers of the response were known. You can implement
a similar behavior in a number of ways. One example might be to use a
FnStream that has access to the transaction being sent. For example, when the
first byte is written, you could check if the response headers match your
expectations, and if so, change the actual stream body that is being
written to.

	Removed the asArray parameter from
GuzzleHttpMessageMessageInterface::getHeader. If you want to get a header
value as an array, then use the newly added getHeaderAsArray() method of
MessageInterface. This change makes the Guzzle interfaces compatible with
the PSR-7 interfaces.

	GuzzleHttpMessageMessageFactory no longer allows subclasses to add
custom request options using double-dispatch (this was an implementation
detail). Instead, you should now provide an associative array to the
constructor which is a mapping of the request option name mapping to a
function that applies the option value to a request.

	Removed the concept of «throwImmediately» from exceptions and error events.
This control mechanism was used to stop a transfer of concurrent requests
from completing. This can now be handled by throwing the exception or by
cancelling a pool of requests or each outstanding future request individually.

	
	Updated to «GuzzleHttpStreams» 3.0.
	
	GuzzleHttpStreamStreamInterface::getContents() no longer accepts a
maxLen parameter. This update makes the Guzzle streams project
compatible with the current PSR-7 proposal.

	GuzzleHttpStreamStream::__construct,
GuzzleHttpStreamStream::factory, and
GuzzleHttpStreamUtils::create no longer accept a size in the second
argument. They now accept an associative array of options, including the
«size» key and «metadata» key which can be used to provide custom metadata.

4.2.2 - 2014-09-08

	Fixed a memory leak in the CurlAdapter when reusing cURL handles.

	No longer using request_fulluri in stream adapter proxies.

	Relative redirects are now based on the last response, not the first response.

4.2.1 - 2014-08-19

	Ensuring that the StreamAdapter does not always add a Content-Type header

	Adding automated github releases with a phar and zip

4.2.0 - 2014-08-17

	Now merging in default options using a case-insensitive comparison.
Closes https://github.com/guzzle/guzzle/issues/767

	Added the ability to automatically decode Content-Encoding response bodies
using the decode_content request option. This is set to true by default
to decode the response body if it comes over the wire with a
Content-Encoding. Set this value to false to disable decoding the
response content, and pass a string to provide a request Accept-Encoding
header and turn on automatic response decoding. This feature now allows you
to pass an Accept-Encoding header in the headers of a request but still
disable automatic response decoding.
Closes https://github.com/guzzle/guzzle/issues/764

	Added the ability to throw an exception immediately when transferring
requests in parallel. Closes https://github.com/guzzle/guzzle/issues/760

	Updating guzzlehttp/streams dependency to ~2.1

	No longer utilizing the now deprecated namespaced methods from the stream
package.

4.1.8 - 2014-08-14

	Fixed an issue in the CurlFactory that caused setting the stream=false
request option to throw an exception.
See: https://github.com/guzzle/guzzle/issues/769

	TransactionIterator now calls rewind on the inner iterator.
See: https://github.com/guzzle/guzzle/pull/765

	You can now set the Content-Type header to multipart/form-data
when creating POST requests to force multipart bodies.
See https://github.com/guzzle/guzzle/issues/768

4.1.7 - 2014-08-07

	Fixed an error in the HistoryPlugin that caused the same request and response
to be logged multiple times when an HTTP protocol error occurs.

	Ensuring that cURL does not add a default Content-Type when no Content-Type
has been supplied by the user. This prevents the adapter layer from modifying
the request that is sent over the wire after any listeners may have already
put the request in a desired state (e.g., signed the request).

	Throwing an exception when you attempt to send requests that have the
«stream» set to true in parallel using the MultiAdapter.

	Only calling curl_multi_select when there are active cURL handles. This was
previously changed and caused performance problems on some systems due to PHP
always selecting until the maximum select timeout.

	Fixed a bug where multipart/form-data POST fields were not correctly
aggregated (e.g., values with «&»).

4.1.6 - 2014-08-03

	Added helper methods to make it easier to represent messages as strings,
including getting the start line and getting headers as a string.

4.1.5 - 2014-08-02

	Automatically retrying cURL «Connection died, retrying a fresh connect»
errors when possible.

	cURL implementation cleanup

	Allowing multiple event subscriber listeners to be registered per event by
passing an array of arrays of listener configuration.

4.1.4 - 2014-07-22

	Fixed a bug that caused multi-part POST requests with more than one field to
serialize incorrectly.

	Paths can now be set to «0»

	ResponseInterface::xml now accepts a libxml_options option and added a
missing default argument that was required when parsing XML response bodies.

	A save_to stream is now created lazily, which means that files are not
created on disk unless a request succeeds.

4.1.3 - 2014-07-15

	Various fixes to multipart/form-data POST uploads

	Wrapping function.php in an if-statement to ensure Guzzle can be used
globally and in a Composer install

	Fixed an issue with generating and merging in events to an event array

	POST headers are only applied before sending a request to allow you to change
the query aggregator used before uploading

	Added much more robust query string parsing

	Fixed various parsing and normalization issues with URLs

	Fixing an issue where multi-valued headers were not being utilized correctly
in the StreamAdapter

4.1.2 - 2014-06-18

	Added support for sending payloads with GET requests

4.1.1 - 2014-06-08

	Fixed an issue related to using custom message factory options in subclasses

	Fixed an issue with nested form fields in a multi-part POST

	Fixed an issue with using the json request option for POST requests

	Added ToArrayInterface to GuzzleHttpCookieCookieJar

4.1.0 - 2014-05-27

	Added a json request option to easily serialize JSON payloads.

	Added a GuzzleHttpjson_decode() wrapper to safely parse JSON.

	Added setPort() and getPort() to GuzzleHttpMessageRequestInterface.

	Added the ability to provide an emitter to a client in the client constructor.

	Added the ability to persist a cookie session using $_SESSION.

	Added a trait that can be used to add event listeners to an iterator.

	Removed request method constants from RequestInterface.

	Fixed warning when invalid request start-lines are received.

	Updated MessageFactory to work with custom request option methods.

	Updated cacert bundle to latest build.

4.0.2 (2014-04-16)

	Proxy requests using the StreamAdapter now properly use request_fulluri (#632)

	Added the ability to set scalars as POST fields (#628)

4.0.1 - 2014-04-04

	The HTTP status code of a response is now set as the exception code of
RequestException objects.

	303 redirects will now correctly switch from POST to GET requests.

	The default parallel adapter of a client now correctly uses the MultiAdapter.

	HasDataTrait now initializes the internal data array as an empty array so
that the toArray() method always returns an array.

4.0.0 - 2014-03-29

	For information on changes and upgrading, see:
https://github.com/guzzle/guzzle/blob/master/UPGRADING.md#3x-to-40

	Added GuzzleHttpbatch() as a convenience function for sending requests in
parallel without needing to write asynchronous code.

	Restructured how events are added to GuzzleHttpClientInterface::sendAll().
You can now pass a callable or an array of associative arrays where each
associative array contains the «fn», «priority», and «once» keys.

4.0.0.rc-2 - 2014-03-25

	Removed getConfig() and setConfig() from clients to avoid confusion
around whether things like base_url, message_factory, etc. should be able to
be retrieved or modified.

	Added getDefaultOption() and setDefaultOption() to ClientInterface

	functions.php functions were renamed using snake_case to match PHP idioms

	Added support for HTTP_PROXY, HTTPS_PROXY, and
GUZZLE_CURL_SELECT_TIMEOUT environment variables

	Added the ability to specify custom sendAll() event priorities

	Added the ability to specify custom stream context options to the stream
adapter.

	Added a functions.php function for get_path() and set_path()

	CurlAdapter and MultiAdapter now use a callable to generate curl resources

	MockAdapter now properly reads a body and emits a headers event

	Updated Url class to check if a scheme and host are set before adding «:»
and «//». This allows empty Url (e.g., «») to be serialized as «».

	Parsing invalid XML no longer emits warnings

	Curl classes now properly throw AdapterExceptions

	Various performance optimizations

	Streams are created with the faster Streamcreate() function

	Marked deprecation_proxy() as internal

	Test server is now a collection of static methods on a class

4.0.0-rc.1 - 2014-03-15

	See https://github.com/guzzle/guzzle/blob/master/UPGRADING.md#3x-to-40

3.8.1 - 2014-01-28

	Bug: Always using GET requests when redirecting from a 303 response

	Bug: CURLOPT_SSL_VERIFYHOST is now correctly set to false when setting $certificateAuthority to false in
GuzzleHttpClientInterface::setSslVerification()

	Bug: RedirectPlugin now uses strict RFC 3986 compliance when combining a base URL with a relative URL

	Bug: The body of a request can now be set to «0»

	Sending PHP stream requests no longer forces HTTP/1.0

	Adding more information to ExceptionCollection exceptions so that users have more context, including a stack trace of
each sub-exception

	Updated the $ref attribute in service descriptions to merge over any existing parameters of a schema (rather than
clobbering everything).

	Merging URLs will now use the query string object from the relative URL (thus allowing custom query aggregators)

	Query strings are now parsed in a way that they do no convert empty keys with no value to have a dangling =.
For example foo&bar=baz is now correctly parsed and recognized as foo&bar=baz rather than foo=&bar=baz.

	Now properly escaping the regular expression delimiter when matching Cookie domains.

	Network access is now disabled when loading XML documents

3.8.0 - 2013-12-05

	Added the ability to define a POST name for a file

	JSON response parsing now properly walks additionalProperties

	cURL error code 18 is now retried automatically in the BackoffPlugin

	Fixed a cURL error when URLs contain fragments

	Fixed an issue in the BackoffPlugin retry event where it was trying to access all exceptions as if they were
CurlExceptions

	CURLOPT_PROGRESS function fix for PHP 5.5 (69fcc1e)

	Added the ability for Guzzle to work with older versions of cURL that do not support CURLOPT_TIMEOUT_MS

	Fixed a bug that was encountered when parsing empty header parameters

	UriTemplate now has a setRegex() method to match the docs

	The debug request parameter now checks if it is truthy rather than if it exists

	Setting the debug request parameter to true shows verbose cURL output instead of using the LogPlugin

	Added the ability to combine URLs using strict RFC 3986 compliance

	Command objects can now return the validation errors encountered by the command

	Various fixes to cache revalidation (#437 and 29797e5)

	Various fixes to the AsyncPlugin

	Cleaned up build scripts

3.7.4 - 2013-10-02

	Bug fix: 0 is now an allowed value in a description parameter that has a default value (#430)

	Bug fix: SchemaFormatter now returns an integer when formatting to a Unix timestamp
(see https://github.com/aws/aws-sdk-php/issues/147)

	Bug fix: Cleaned up and fixed URL dot segment removal to properly resolve internal dots

	Minimum PHP version is now properly specified as 5.3.3 (up from 5.3.2) (#420)

	Updated the bundled cacert.pem (#419)

	OauthPlugin now supports adding authentication to headers or query string (#425)

3.7.3 - 2013-09-08

	Added the ability to get the exception associated with a request/command when using MultiTransferException and
CommandTransferException.

	Setting additionalParameters of a response to false is now honored when parsing responses with a service description

	Schemas are only injected into response models when explicitly configured.

	No longer guessing Content-Type based on the path of a request. Content-Type is now only guessed based on the path of
an EntityBody.

	Bug fix: ChunkedIterator can now properly chunk a Traversable as well as an Iterator.

	Bug fix: FilterIterator now relies on Iterator instead of Traversable.

	Bug fix: Gracefully handling malformed responses in RequestMediator::writeResponseBody()

	Bug fix: Replaced call to canCache with canCacheRequest in the CallbackCanCacheStrategy of the CachePlugin

	Bug fix: Visiting XML attributes first before visiting XML children when serializing requests

	Bug fix: Properly parsing headers that contain commas contained in quotes

	Bug fix: mimetype guessing based on a filename is now case-insensitive

3.7.2 - 2013-08-02

	Bug fix: Properly URL encoding paths when using the PHP-only version of the UriTemplate expander
See https://github.com/guzzle/guzzle/issues/371

	Bug fix: Cookie domains are now matched correctly according to RFC 6265
See https://github.com/guzzle/guzzle/issues/377

	Bug fix: GET parameters are now used when calculating an OAuth signature

	Bug fix: Fixed an issue with cache revalidation where the If-None-Match header was being double quoted

	GuzzleCommonAbstractHasDispatcher::dispatch() now returns the event that was dispatched

	GuzzleHttpQueryString::factory() now guesses the most appropriate query aggregator to used based on the input.
See https://github.com/guzzle/guzzle/issues/379

	Added a way to add custom domain objects to service description parsing using the operation.parse_class event. See
https://github.com/guzzle/guzzle/pull/380

	cURL multi cleanup and optimizations

3.7.1 - 2013-07-05

	Bug fix: Setting default options on a client now works

	Bug fix: Setting options on HEAD requests now works. See #352

	Bug fix: Moving stream factory before send event to before building the stream. See #353

	Bug fix: Cookies no longer match on IP addresses per RFC 6265

	Bug fix: Correctly parsing header parameters that are in <> and quotes

	Added cert and ssl_key as request options

	Host header can now diverge from the host part of a URL if the header is set manually

	GuzzleServiceCommandLocationVisitorRequestXmlVisitor was rewritten to change from using SimpleXML to XMLWriter

	OAuth parameters are only added via the plugin if they aren’t already set

	Exceptions are now thrown when a URL cannot be parsed

	Returning false if GuzzleHttpEntityBody::getContentMd5() fails

	Not setting a Content-MD5 on a command if calculating the Content-MD5 fails via the CommandContentMd5Plugin

3.7.0 - 2013-06-10

	See UPGRADING.md for more information on how to upgrade.

	Requests now support the ability to specify an array of $options when creating a request to more easily modify a
request. You can pass a „request.options“ configuration setting to a client to apply default request options to
every request created by a client (e.g. default query string variables, headers, curl options, etc.).

	Added a static facade class that allows you to use Guzzle with static methods and mount the class to Guzzle.
See GuzzleHttpStaticClient::mount.

	
	Added command.request_options to GuzzleServiceCommandAbstractCommand to pass request options to requests
	created by a command (e.g. custom headers, query string variables, timeout settings, etc.).

	Stream size in GuzzleStreamPhpStreamRequestFactory will now be set if Content-Length is returned in the
headers of a response

	Added GuzzleCommonCollection::setPath($path, $value) to set a value into an array using a nested key
(e.g. $collection->setPath(„foo/baz/bar“, „test“); echo $collection[„foo“][„bar“][„bar“];)

	ServiceBuilders now support storing and retrieving arbitrary data

	CachePlugin can now purge all resources for a given URI

	CachePlugin can automatically purge matching cached items when a non-idempotent request is sent to a resource

	CachePlugin now uses the Vary header to determine if a resource is a cache hit

	GuzzleHttpMessageResponse now implements Serializable

	Added GuzzleCacheCacheAdapterFactory::fromCache() to more easily create cache adapters

	GuzzleServiceClientInterface::execute() now accepts an array, single command, or Traversable

	Fixed a bug in GuzzleHttpMessageHeaderLink::addLink()

	Better handling of calculating the size of a stream in GuzzleStreamStream using fstat() and caching the size

	GuzzleCommonExceptionExceptionCollection now creates a more readable exception message

	Fixing BC break: Added back the MonologLogAdapter implementation rather than extending from PsrLog so that older
Symfony users can still use the old version of Monolog.

	Fixing BC break: Added the implementation back in for GuzzleHttpMessageAbstractMessage::getTokenizedHeader().
Now triggering an E_USER_DEPRECATED warning when used. Use $message->getHeader()->parseParams().

	Several performance improvements to GuzzleCommonCollection

	Added an $options argument to the end of the following methods of GuzzleHttpClientInterface:
createRequest, head, delete, put, patch, post, options, prepareRequest

	Added an $options argument to the end of GuzzleHttpMessageRequestRequestFactoryInterface::createRequest()

	Added an applyOptions() method to GuzzleHttpMessageRequestRequestFactoryInterface

	Changed GuzzleHttpClientInterface::get($uri = null, $headers = null, $body = null) to
GuzzleHttpClientInterface::get($uri = null, $headers = null, $options = array()). You can still pass in a
resource, string, or EntityBody into the $options parameter to specify the download location of the response.

	Changed GuzzleCommonCollection::__construct($data) to no longer accepts a null value for $data but a
default array()

	Added GuzzleStreamStreamInterface::isRepeatable

	Removed GuzzleHttpClientInterface::setDefaultHeaders(). Use
$client->getConfig()->setPath(„request.options/headers/{header_name}“, „value“). or
$client->getConfig()->setPath(„request.options/headers“, array(„header_name“ => „value“))`.

	Removed GuzzleHttpClientInterface::getDefaultHeaders(). Use $client->getConfig()->getPath(„request.options/headers“).

	Removed GuzzleHttpClientInterface::expandTemplate()

	Removed GuzzleHttpClientInterface::setRequestFactory()

	Removed GuzzleHttpClientInterface::getCurlMulti()

	Removed GuzzleHttpMessageRequestInterface::canCache

	Removed GuzzleHttpMessageRequestInterface::setIsRedirect

	Removed GuzzleHttpMessageRequestInterface::isRedirect

	Made GuzzleHttpClient::expandTemplate and getUriTemplate protected methods.

	You can now enable E_USER_DEPRECATED warnings to see if you are using a deprecated method by setting
GuzzleCommonVersion::$emitWarnings to true.

	
	Marked GuzzleHttpMessageRequest::isResponseBodyRepeatable() as deprecated. Use
	$request->getResponseBody()->isRepeatable() instead.

	Marked GuzzleHttpMessageRequest::canCache() as deprecated. Use
GuzzlePluginCacheDefaultCanCacheStrategy->canCacheRequest() instead.

	Marked GuzzleHttpMessageRequest::canCache() as deprecated. Use
GuzzlePluginCacheDefaultCanCacheStrategy->canCacheRequest() instead.

	Marked GuzzleHttpMessageRequest::setIsRedirect() as deprecated. Use the HistoryPlugin instead.

	Marked GuzzleHttpMessageRequest::isRedirect() as deprecated. Use the HistoryPlugin instead.

	Marked GuzzleCacheCacheAdapterFactory::factory() as deprecated

	Marked „command.headers“, „command.response_body“ and „command.on_complete“ as deprecated for AbstractCommand.
These will work through Guzzle 4.0

	Marked „request.params“ for GuzzleHttpClient as deprecated. Use [request.options][params].

	Marked GuzzleServiceClient::enableMagicMethods() as deprecated. Magic methods can no longer be disabled on a GuzzleServiceClient.

	Marked GuzzleServiceClient::getDefaultHeaders() as deprecated. Use $client->getConfig()->getPath(„request.options/headers“)`.

	Marked GuzzleServiceClient::setDefaultHeaders() as deprecated. Use $client->getConfig()->setPath(„request.options/headers/{header_name}“, „value“)`.

	Marked GuzzleParserUrlUrlParser as deprecated. Just use PHP’s parse_url() and percent encode your UTF-8.

	Marked GuzzleCommonCollection::inject() as deprecated.

	Marked GuzzlePluginCurlAuthCurlAuthPlugin as deprecated. Use $client->getConfig()->setPath(„request.options/auth“, array(„user“, „pass“, „Basic|Digest“);

	CacheKeyProviderInterface and DefaultCacheKeyProvider are no longer used. All of this logic is handled in a
CacheStorageInterface. These two objects and interface will be removed in a future version.

	Always setting X-cache headers on cached responses

	Default cache TTLs are now handled by the CacheStorageInterface of a CachePlugin

	CacheStorageInterface::cache($key, Response $response, $ttl = null) has changed to cache(RequestInterface
$request, Response $response);

	CacheStorageInterface::fetch($key) has changed to fetch(RequestInterface $request);

	CacheStorageInterface::delete($key) has changed to delete(RequestInterface $request);

	Added CacheStorageInterface::purge($url)

	DefaultRevalidation::__construct(CacheKeyProviderInterface $cacheKey, CacheStorageInterface $cache, CachePlugin
$plugin) has changed to DefaultRevalidation::__construct(CacheStorageInterface $cache,
CanCacheStrategyInterface $canCache = null)

	Added RevalidationInterface::shouldRevalidate(RequestInterface $request, Response $response)

3.6.0 - 2013-05-29

	ServiceDescription now implements ToArrayInterface

	Added command.hidden_params to blacklist certain headers from being treated as additionalParameters

	Guzzle can now correctly parse incomplete URLs

	Mixed casing of headers are now forced to be a single consistent casing across all values for that header.

	Messages internally use a HeaderCollection object to delegate handling case-insensitive header resolution

	Removed the whole changedHeader() function system of messages because all header changes now go through addHeader().

	Specific header implementations can be created for complex headers. When a message creates a header, it uses a
HeaderFactory which can map specific headers to specific header classes. There is now a Link header and
CacheControl header implementation.

	Removed from interface: GuzzleHttpClientInterface::setUriTemplate

	Removed from interface: GuzzleHttpClientInterface::setCurlMulti()

	Removed GuzzleHttpMessageRequest::receivedRequestHeader() and implemented this functionality in
GuzzleHttpCurlRequestMediator

	Removed the optional $asString parameter from MessageInterface::getHeader(). Just cast the header to a string.

	Removed the optional $tryChunkedTransfer option from GuzzleHttpMessageEntityEnclosingRequestInterface

	Removed the $asObjects argument from GuzzleHttpMessageMessageInterface::getHeaders()

	Removed GuzzleParserParserRegister::get(). Use getParser()

	Removed GuzzleParserParserRegister::set(). Use registerParser().

	All response header helper functions return a string rather than mixing Header objects and strings inconsistently

	Removed cURL blacklist support. This is no longer necessary now that Expect, Accept, etc. are managed by Guzzle
directly via interfaces

	Removed the injecting of a request object onto a response object. The methods to get and set a request still exist
but are a no-op until removed.

	Most classes that used to require a GuzzleServiceCommandCommandInterface typehint now request a
GuzzleServiceCommandArrayCommandInterface.

	Added GuzzleHttpMessageRequestInterface::startResponse() to the RequestInterface to handle injecting a response
on a request while the request is still being transferred

	The ability to case-insensitively search for header values

	GuzzleHttpMessageHeader::hasExactHeader

	GuzzleHttpMessageHeader::raw. Use getAll()

	Deprecated cache control specific methods on GuzzleHttpMessageAbstractMessage. Use the CacheControl header object
instead.

	GuzzleServiceCommandCommandInterface now extends from ToArrayInterface and ArrayAccess

	Added the ability to cast Model objects to a string to view debug information.

3.5.0 - 2013-05-13

	Bug: Fixed a regression so that request responses are parsed only once per oncomplete event rather than multiple times

	Bug: Better cleanup of one-time events across the board (when an event is meant to fire once, it will now remove
itself from the EventDispatcher)

	Bug: GuzzleLogMessageFormatter now properly writes «total_time» and «connect_time» values

	Bug: Cloning an EntityEnclosingRequest now clones the EntityBody too

	Bug: Fixed an undefined index error when parsing nested JSON responses with a sentAs parameter that reference a
non-existent key

	Bug: All __call() method arguments are now required (helps with mocking frameworks)

	Deprecating Response::getRequest() and now using a shallow clone of a request object to remove a circular reference
to help with refcount based garbage collection of resources created by sending a request

	Deprecating ZF1 cache and log adapters. These will be removed in the next major version.

	Deprecating Response::getPreviousResponse() (method signature still exists, but it’s deprecated). Use the
HistoryPlugin for a history.

	Added a responseBody alias for the response_body location

	Refactored internals to no longer rely on Response::getRequest()

	HistoryPlugin can now be cast to a string

	HistoryPlugin now logs transactions rather than requests and responses to more accurately keep track of the requests
and responses that are sent over the wire

	Added getEffectiveUrl() and getRedirectCount() to Response objects

3.4.3 - 2013-04-30

	Bug fix: Fixing bug introduced in 3.4.2 where redirect responses are duplicated on the final redirected response

	Added a check to re-extract the temp cacert bundle from the phar before sending each request

3.4.2 - 2013-04-29

	Bug fix: Stream objects now work correctly with «a» and «a+» modes

	Bug fix: Removing Transfer-Encoding: chunked header when a Content-Length is present

	Bug fix: AsyncPlugin no longer forces HEAD requests

	Bug fix: DateTime timezones are now properly handled when using the service description schema formatter

	Bug fix: CachePlugin now properly handles stale-if-error directives when a request to the origin server fails

	Setting a response on a request will write to the custom request body from the response body if one is specified

	LogPlugin now writes to php://output when STDERR is undefined

	Added the ability to set multiple POST files for the same key in a single call

	application/x-www-form-urlencoded POSTs now use the utf-8 charset by default

	Added the ability to queue CurlExceptions to the MockPlugin

	Cleaned up how manual responses are queued on requests (removed «queued_response» and now using request.before_send)

	Configuration loading now allows remote files

3.4.1 - 2013-04-16

	Large refactoring to how CurlMulti handles work. There is now a proxy that sits in front of a pool of CurlMulti
handles. This greatly simplifies the implementation, fixes a couple bugs, and provides a small performance boost.

	Exceptions are now properly grouped when sending requests in parallel

	Redirects are now properly aggregated when a multi transaction fails

	Redirects now set the response on the original object even in the event of a failure

	Bug fix: Model names are now properly set even when using $refs

	Added support for PHP 5.5’s CurlFile to prevent warnings with the deprecated @ syntax

	Added support for oauth_callback in OAuth signatures

	Added support for oauth_verifier in OAuth signatures

	Added support to attempt to retrieve a command first literally, then ucfirst, the with inflection

3.4.0 - 2013-04-11

	Bug fix: URLs are now resolved correctly based on https://tools.ietf.org/html/rfc3986#section-5.2. #289

	Bug fix: Absolute URLs with a path in a service description will now properly override the base URL. #289

	Bug fix: Parsing a query string with a single PHP array value will now result in an array. #263

	Bug fix: Better normalization of the User-Agent header to prevent duplicate headers. #264.

	Bug fix: Added number type to service descriptions.

	Bug fix: empty parameters are removed from an OAuth signature

	Bug fix: Revalidating a cache entry prefers the Last-Modified over the Date header

	Bug fix: Fixed «array to string» error when validating a union of types in a service description

	Bug fix: Removed code that attempted to determine the size of a stream when data is written to the stream

	Bug fix: Not including an oauth_token if the value is null in the OauthPlugin.

	Bug fix: Now correctly aggregating successful requests and failed requests in CurlMulti when a redirect occurs.

	The new default CURLOPT_TIMEOUT setting has been increased to 150 seconds so that Guzzle works on poor connections.

	Added a feature to EntityEnclosingRequest::setBody() that will automatically set the Content-Type of the request if
the Content-Type can be determined based on the entity body or the path of the request.

	Added the ability to overwrite configuration settings in a client when grabbing a throwaway client from a builder.

	Added support for a PSR-3 LogAdapter.

	Added a command.after_prepare event

	Added oauth_callback parameter to the OauthPlugin

	Added the ability to create a custom stream class when using a stream factory

	Added a CachingEntityBody decorator

	Added support for additionalParameters in service descriptions to define how custom parameters are serialized.

	The bundled SSL certificate is now provided in the phar file and extracted when running Guzzle from a phar.

	You can now send any EntityEnclosingRequest with POST fields or POST files and cURL will handle creating bodies

	POST requests using a custom entity body are now treated exactly like PUT requests but with a custom cURL method. This
means that the redirect behavior of POST requests with custom bodies will not be the same as POST requests that use
POST fields or files (the latter is only used when emulating a form POST in the browser).

	Lots of cleanup to CurlHandle::factory and RequestFactory::createRequest

3.3.1 - 2013-03-10

	Added the ability to create PHP streaming responses from HTTP requests

	Bug fix: Running any filters when parsing response headers with service descriptions

	Bug fix: OauthPlugin fixes to allow for multi-dimensional array signing, and sorting parameters before signing

	Bug fix: Removed the adding of default empty arrays and false Booleans to responses in order to be consistent across
response location visitors.

	Bug fix: Removed the possibility of creating configuration files with circular dependencies

	RequestFactory::create() now uses the key of a POST file when setting the POST file name

	Added xmlAllowEmpty to serialize an XML body even if no XML specific parameters are set

3.3.0 - 2013-03-03

	A large number of performance optimizations have been made

	Bug fix: Added „wb“ as a valid write mode for streams

	Bug fix: GuzzleHttpMessageResponse::json() now allows scalar values to be returned

	Bug fix: Fixed bug in GuzzleHttpMessageResponse where wrapping quotes were stripped from getEtag()

	BC: Removed GuzzleHttpUtils class

	BC: Setting a service description on a client will no longer modify the client’s command factories.

	BC: Emitting IO events from a RequestMediator is now a parameter that must be set in a request’s curl options using
the „emit_io“ key. This was previously set under a request’s parameters using „curl.emit_io“

	BC: GuzzleStreamStream::getWrapper() and GuzzleStreamStream::getSteamType() are no longer converted to
lowercase

	Operation parameter objects are now lazy loaded internally

	Added ErrorResponsePlugin that can throw errors for responses defined in service description operations“ errorResponses

	Added support for instantiating responseType=class responseClass classes. Classes must implement
GuzzleServiceCommandResponseClassInterface

	Added support for additionalProperties for top-level parameters in responseType=model responseClasses. These
additional properties also support locations and can be used to parse JSON responses where the outermost part of the
JSON is an array

	Added support for nested renaming of JSON models (rename sentAs to name)

	
	CachePlugin
	
	Added support for stale-if-error so that the CachePlugin can now serve stale content from the cache on error

	Debug headers can now added to cached response in the CachePlugin

3.2.0 - 2013-02-14

	CurlMulti is no longer reused globally. A new multi object is created per-client. This helps to isolate clients.

	URLs with no path no longer contain a «/» by default

	GuzzleHttpQueryString does no longer manages the leading «?». This is now handled in GuzzleHttpUrl.

	BadResponseException no longer includes the full request and response message

	Adding setData() to GuzzleServiceDescriptionServiceDescriptionInterface

	Adding getResponseBody() to GuzzleHttpMessageRequestInterface

	Various updates to classes to use ServiceDescriptionInterface type hints rather than ServiceDescription

	Header values can now be normalized into distinct values when multiple headers are combined with a comma separated list

	xmlEncoding can now be customized for the XML declaration of a XML service description operation

	GuzzleHttpQueryString now uses GuzzleHttpQueryAggregatorQueryAggregatorInterface objects to add custom value
aggregation and no longer uses callbacks

	The URL encoding implementation of GuzzleHttpQueryString can now be customized

	Bug fix: Filters were not always invoked for array service description parameters

	Bug fix: Redirects now use a target response body rather than a temporary response body

	Bug fix: The default exponential backoff BackoffPlugin was not giving when the request threshold was exceeded

	Bug fix: Guzzle now takes the first found value when grabbing Cache-Control directives

3.1.2 - 2013-01-27

	Refactored how operation responses are parsed. Visitors now include a before() method responsible for parsing the
response body. For example, the XmlVisitor now parses the XML response into an array in the before() method.

	Fixed an issue where cURL would not automatically decompress responses when the Accept-Encoding header was sent

	CURLOPT_SSL_VERIFYHOST is never set to 1 because it is deprecated (see 5e0ff2ef20f839e19d1eeb298f90ba3598784444)

	Fixed a bug where redirect responses were not chained correctly using getPreviousResponse()

	Setting default headers on a client after setting the user-agent will not erase the user-agent setting

3.1.1 - 2013-01-20

	Adding wildcard support to GuzzleCommonCollection::getPath()

	Adding alias support to ServiceBuilder configs

	Adding GuzzleServiceResourceCompositeResourceIteratorFactory and cleaning up factory interface

3.1.0 - 2013-01-12

	BC: CurlException now extends from RequestException rather than BadResponseException

	BC: Renamed GuzzlePluginCacheCanCacheStrategyInterface::canCache() to canCacheRequest() and added CanCacheResponse()

	Added getData to ServiceDescriptionInterface

	Added context array to RequestInterface::setState()

	Bug: Removing hard dependency on the BackoffPlugin from GuzzleHttp

	Bug: Adding required content-type when JSON request visitor adds JSON to a command

	Bug: Fixing the serialization of a service description with custom data

	Made it easier to deal with exceptions thrown when transferring commands or requests in parallel by providing
an array of successful and failed responses

	Moved getPath from GuzzleServiceResourceModel to GuzzleCommonCollection

	Added GuzzleHttpIoEmittingEntityBody

	Moved command filtration from validators to location visitors

	Added extends attributes to service description parameters

	Added getModels to ServiceDescriptionInterface

3.0.7 - 2012-12-19

	Fixing phar detection when forcing a cacert to system if null or true

	Allowing filename to be passed to GuzzleHttpMessageRequest::setResponseBody()

	Cleaning up GuzzleCommonCollection::inject method

	Adding a response_body location to service descriptions

3.0.6 - 2012-12-09

	CurlMulti performance improvements

	Adding setErrorResponses() to Operation

	composer.json tweaks

3.0.5 - 2012-11-18

	Bug: Fixing an infinite recursion bug caused from revalidating with the CachePlugin

	Bug: Response body can now be a string containing «0»

	Bug: Using Guzzle inside of a phar uses system by default but now allows for a custom cacert

	Bug: QueryString::fromString now properly parses query string parameters that contain equal signs

	Added support for XML attributes in service description responses

	DefaultRequestSerializer now supports array URI parameter values for URI template expansion

	Added better mimetype guessing to requests and post files

3.0.4 - 2012-11-11

	Bug: Fixed a bug when adding multiple cookies to a request to use the correct glue value

	Bug: Cookies can now be added that have a name, domain, or value set to «0»

	Bug: Using the system cacert bundle when using the Phar

	Added json and xml methods to Response to make it easier to parse JSON and XML response data into data structures

	Enhanced cookie jar de-duplication

	Added the ability to enable strict cookie jars that throw exceptions when invalid cookies are added

	Added setStream to StreamInterface to actually make it possible to implement custom rewind behavior for entity bodies

	Added the ability to create any sort of hash for a stream rather than just an MD5 hash

3.0.3 - 2012-11-04

	Implementing redirects in PHP rather than cURL

	Added PECL URI template extension and using as default parser if available

	Bug: Fixed Content-Length parsing of Response factory

	Adding rewind() method to entity bodies and streams. Allows for custom rewinding of non-repeatable streams.

	Adding ToArrayInterface throughout library

	Fixing OauthPlugin to create unique nonce values per request

3.0.2 - 2012-10-25

	Magic methods are enabled by default on clients

	Magic methods return the result of a command

	Service clients no longer require a base_url option in the factory

	Bug: Fixed an issue with URI templates where null template variables were being expanded

3.0.1 - 2012-10-22

	Models can now be used like regular collection objects by calling filter, map, etc.

	Models no longer require a Parameter structure or initial data in the constructor

	Added a custom AppendIterator to get around a PHP bug with the AppendIterator

3.0.0 - 2012-10-15

	
	Rewrote service description format to be based on Swagger
	
	Now based on JSON schema

	Added nested input structures and nested response models

	Support for JSON and XML input and output models

	Renamed commands to operations

	Removed dot class notation

	Removed custom types

	Broke the project into smaller top-level namespaces to be more component friendly

	Removed support for XML configs and descriptions. Use arrays or JSON files.

	Removed the Validation component and Inspector

	Moved all cookie code to GuzzlePluginCookie

	Magic methods on a GuzzleServiceClient now return the command un-executed.

	Calling getResult() or getResponse() on a command will lazily execute the command if needed.

	Now shipping with cURL’s CA certs and using it by default

	Added previousResponse() method to response objects

	No longer sending Accept and Accept-Encoding headers on every request

	Only sending an Expect header by default when a payload is greater than 1MB

	
	Added/moved client options:
	
	curl.blacklist to curl.option.blacklist

	Added ssl.certificate_authority

	Added a GuzzleIterator component

	Moved plugins from GuzzleHttpPlugin to GuzzlePlugin

	Added a more robust backoff retry strategy (replaced the ExponentialBackoffPlugin)

	Added a more robust caching plugin

	Added setBody to response objects

	Updating LogPlugin to use a more flexible MessageFormatter

	Added a completely revamped build process

	Cleaning up Collection class and removing default values from the get method

	Fixed ZF2 cache adapters

2.8.8 - 2012-10-15

	Bug: Fixed a cookie issue that caused dot prefixed domains to not match where popular browsers did

2.8.7 - 2012-09-30

	Bug: Fixed config file aliases for JSON includes

	Bug: Fixed cookie bug on a request object by using CookieParser to parse cookies on requests

	Bug: Removing the path to a file when sending a Content-Disposition header on a POST upload

	Bug: Hardening request and response parsing to account for missing parts

	Bug: Fixed PEAR packaging

	Bug: Fixed Request::getInfo

	Bug: Fixed cases where CURLM_CALL_MULTI_PERFORM return codes were causing curl transactions to fail

	Adding the ability for the namespace Iterator factory to look in multiple directories

	Added more getters/setters/removers from service descriptions

	Added the ability to remove POST fields from OAuth signatures

	OAuth plugin now supports 2-legged OAuth

2.8.6 - 2012-09-05

	Added the ability to modify and build service descriptions

	Added the use of visitors to apply parameters to locations in service descriptions using the dynamic command

	Added a json parameter location

	Now allowing dot notation for classes in the CacheAdapterFactory

	Using the union of two arrays rather than an array_merge when extending service builder services and service params

	Ensuring that a service is a string before doing strpos() checks on it when substituting services for references
in service builder config files.

	Services defined in two different config files that include one another will by default replace the previously
defined service, but you can now create services that extend themselves and merge their settings over the previous

	The JsonLoader now supports aliasing filenames with different filenames. This allows you to alias something like
„_default“ with a default JSON configuration file.

2.8.5 - 2012-08-29

	Bug: Suppressed empty arrays from URI templates

	Bug: Added the missing $options argument from ServiceDescription::factory to enable caching

	Added support for HTTP responses that do not contain a reason phrase in the start-line

	AbstractCommand commands are now invokable

	Added a way to get the data used when signing an Oauth request before a request is sent

2.8.4 - 2012-08-15

	Bug: Custom delay time calculations are no longer ignored in the ExponentialBackoffPlugin

	Added the ability to transfer entity bodies as a string rather than streamed. This gets around curl error 65. Set body_as_string in a request’s curl options to enable.

	Added a StreamInterface, EntityBodyInterface, and added ftell() to GuzzleCommonStream

	Added an AbstractEntityBodyDecorator and a ReadLimitEntityBody decorator to transfer only a subset of a decorated stream

	Stream and EntityBody objects will now return the file position to the previous position after a read required operation (e.g. getContentMd5())

	Added additional response status codes

	Removed SSL information from the default User-Agent header

	DELETE requests can now send an entity body

	Added an EventDispatcher to the ExponentialBackoffPlugin and added an ExponentialBackoffLogger to log backoff retries

	Added the ability of the MockPlugin to consume mocked request bodies

	LogPlugin now exposes request and response objects in the extras array

2.8.3 - 2012-07-30

	Bug: Fixed a case where empty POST requests were sent as GET requests

	Bug: Fixed a bug in ExponentialBackoffPlugin that caused fatal errors when retrying an EntityEnclosingRequest that does not have a body

	Bug: Setting the response body of a request to null after completing a request, not when setting the state of a request to new

	Added multiple inheritance to service description commands

	Added an ApiCommandInterface and added getParamNames() and hasParam()

	Removed the default 2mb size cutoff from the Md5ValidatorPlugin so that it now defaults to validating everything

	Changed CurlMulti::perform to pass a smaller timeout to CurlMulti::executeHandles

2.8.2 - 2012-07-24

	Bug: Query string values set to 0 are no longer dropped from the query string

	Bug: A Collection object is no longer created each time a call is made to GuzzleServiceCommandAbstractCommand::getRequestHeaders()

	Bug: + is now treated as an encoded space when parsing query strings

	QueryString and Collection performance improvements

	Allowing dot notation for class paths in filters attribute of a service descriptions

2.8.1 - 2012-07-16

	Loosening Event Dispatcher dependency

	POST redirects can now be customized using CURLOPT_POSTREDIR

2.8.0 - 2012-07-15

	
	BC: GuzzleHttpQuery
	
	Query strings with empty variables will always show an equal sign unless the variable is set to QueryString::BLANK (e.g. ?acl= vs ?acl)

	Changed isEncodingValues() and isEncodingFields() to isUrlEncoding()

	Changed setEncodeValues(bool) and setEncodeFields(bool) to useUrlEncoding(bool)

	Changed the aggregation functions of QueryString to be static methods

	Can now use fromString() with querystrings that have a leading ?

	cURL configuration values can be specified in service descriptions using curl. prefixed parameters

	Content-Length is set to 0 before emitting the request.before_send event when sending an empty request body

	Cookies are no longer URL decoded by default

	Bug: URI template variables set to null are no longer expanded

2.7.2 - 2012-07-02

	BC: Moving things to get ready for subtree splits. Moving Inflection into Common. Moving GuzzleHttpParser to GuzzleParser.

	BC: Removing GuzzleCommonBatchBatch::count() and replacing it with isEmpty()

	CachePlugin now allows for a custom request parameter function to check if a request can be cached

	Bug fix: CachePlugin now only caches GET and HEAD requests by default

	Bug fix: Using header glue when transferring headers over the wire

	Allowing deeply nested arrays for composite variables in URI templates

	Batch divisors can now return iterators or arrays

2.7.1 - 2012-06-26

	Minor patch to update version number in UA string

	Updating build process

2.7.0 - 2012-06-25

	BC: Inflection classes moved to GuzzleInflection. No longer static methods. Can now inject custom inflectors into classes.

	BC: Removed magic setX methods from commands

	BC: Magic methods mapped to service description commands are now inflected in the command factory rather than the client __call() method

	Verbose cURL options are no longer enabled by default. Set curl.debug to true on a client to enable.

	Bug: Now allowing colons in a response start-line (e.g. HTTP/1.1 503 Service Unavailable: Back-end server is at capacity)

	GuzzleServiceResourceResourceIteratorApplyBatched now internally uses the GuzzleCommonBatch namespace

	Added GuzzleServicePlugin namespace and a PluginCollectionPlugin

	Added the ability to set POST fields and files in a service description

	GuzzleHttpEntityBody::factory() now accepts objects with a __toString() method

	Adding a command.before_prepare event to clients

	Added BatchClosureTransfer and BatchClosureDivisor

	BatchTransferException now includes references to the batch divisor and transfer strategies

	Fixed some tests so that they pass more reliably

	Added GuzzleCommonLogArrayLogAdapter

2.6.6 - 2012-06-10

	BC: Removing GuzzleHttpPluginBatchQueuePlugin

	BC: Removing GuzzleServiceCommandCommandSet

	Adding generic batching system (replaces the batch queue plugin and command set)

	Updating ZF cache and log adapters and now using ZF’s composer repository

	Bug: Setting the name of each ApiParam when creating through an ApiCommand

	Adding result_type, result_doc, deprecated, and doc_url to service descriptions

	Bug: Changed the default cookie header casing back to „Cookie“

2.6.5 - 2012-06-03

	BC: Renaming GuzzleHttpMessageRequestInterface::getResourceUri() to getResource()

	BC: Removing unused AUTH_BASIC and AUTH_DIGEST constants from

	BC: GuzzleHttpCookie is now used to manage Set-Cookie data, not Cookie data

	BC: Renaming methods in the CookieJarInterface

	Moving almost all cookie logic out of the CookiePlugin and into the Cookie or CookieJar implementations

	Making the default glue for HTTP headers „;“ instead of „,“

	Adding a removeValue to GuzzleHttpMessageHeader

	Adding getCookies() to request interface.

	Making it easier to add event subscribers to HasDispatcherInterface classes. Can now directly call addSubscriber()

2.6.4 - 2012-05-30

	BC: Cleaning up how POST files are stored in EntityEnclosingRequest objects. Adding PostFile class.

	BC: Moving ApiCommand specific functionality from the Inspector and on to the ApiCommand

	Bug: Fixing magic method command calls on clients

	Bug: Email constraint only validates strings

	Bug: Aggregate POST fields when POST files are present in curl handle

	Bug: Fixing default User-Agent header

	Bug: Only appending or prepending parameters in commands if they are specified

	Bug: Not requiring response reason phrases or status codes to match a predefined list of codes

	Allowing the use of dot notation for class namespaces when using instance_of constraint

	Added any_match validation constraint

	Added an AsyncPlugin

	Passing request object to the calculateWait method of the ExponentialBackoffPlugin

	Allowing the result of a command object to be changed

	Parsing location and type sub values when instantiating a service description rather than over and over at runtime

2.6.3 - 2012-05-23

	[BC] GuzzleCommonFromConfigInterface no longer requires any config options.

	[BC] Refactoring how POST files are stored on an EntityEnclosingRequest. They are now separate from POST fields.

	You can now use an array of data when creating PUT request bodies in the request factory.

	Removing the requirement that HTTPS requests needed a Cache-Control: public directive to be cacheable.

	[Http] Adding support for Content-Type in multipart POST uploads per upload

	[Http] Added support for uploading multiple files using the same name (foo[0], foo[1])

	Adding more POST data operations for easier manipulation of POST data.

	You can now set empty POST fields.

	The body of a request is only shown on EntityEnclosingRequest objects that do not use POST files.

	Split the GuzzleServiceInspector::validateConfig method into two methods. One to initialize when a command is created, and one to validate.

	CS updates

2.6.2 - 2012-05-19

	[Http] Better handling of nested scope requests in CurlMulti. Requests are now always prepares in the send() method rather than the addRequest() method.

2.6.1 - 2012-05-19

	[BC] Removing „path“ support in service descriptions. Use „uri“.

	[BC] GuzzleServiceInspector::parseDocBlock is now protected. Adding getApiParamsForClass() with cache.

	[BC] Removing GuzzleCommonNullObject. Use https://github.com/mtdowling/NullObject if you need it.

	[BC] Removing GuzzleCommonXmlElement.

	All commands, both dynamic and concrete, have ApiCommand objects.

	Adding a fix for CurlMulti so that if all of the connections encounter some sort of curl error, then the loop exits.

	Adding checks to EntityEnclosingRequest so that empty POST files and fields are ignored.

	Making the method signature of GuzzleServiceBuilderServiceBuilder::factory more flexible.

2.6.0 - 2012-05-15

	[BC] Moving GuzzleServiceBuilder to GuzzleServiceBuilderServiceBuilder

	[BC] Executing a Command returns the result of the command rather than the command

	[BC] Moving all HTTP parsing logic to GuzzleHttpParsers. Allows for faster C implementations if needed.

	[BC] Changing the GuzzleHttpMessageResponse::setProtocol() method to accept a protocol and version in separate args.

	[BC] Moving ResourceIterator* to GuzzleServiceResource

	[BC] Completely refactored ResourceIterators to iterate over a cloned command object

	[BC] Moved GuzzleHttpUriTemplate to GuzzleHttpParserUriTemplateUriTemplate

	[BC] GuzzleGuzzle is now deprecated

	Moving GuzzleCommonGuzzle::inject to GuzzleCommonCollection::inject

	Adding GuzzleVersion class to give version information about Guzzle

	Adding GuzzleHttpUtils class to provide getDefaultUserAgent() and getHttpDate()

	Adding GuzzleCurlCurlVersion to manage caching curl_version() data

	ServiceDescription and ServiceBuilder are now cacheable using similar configs

	Changing the format of XML and JSON service builder configs. Backwards compatible.

	Cleaned up Cookie parsing

	Trimming the default Guzzle User-Agent header

	Adding a setOnComplete() method to Commands that is called when a command completes

	Keeping track of requests that were mocked in the MockPlugin

	Fixed a caching bug in the CacheAdapterFactory

	Inspector objects can be injected into a Command object

	Refactoring a lot of code and tests to be case insensitive when dealing with headers

	Adding GuzzleHttpMessageHeaderComparison for easy comparison of HTTP headers using a DSL

	Adding the ability to set global option overrides to service builder configs

	Adding the ability to include other service builder config files from within XML and JSON files

	Moving the parseQuery method out of Url and on to QueryString::fromString() as a static factory method.

2.5.0 - 2012-05-08

	Major performance improvements

	[BC] Simplifying GuzzleCommonCollection. Please check to see if you are using features that are now deprecated.

	[BC] Using a custom validation system that allows a flyweight implementation for much faster validation. No longer using Symfony2 Validation component.

	[BC] No longer supporting «{{ }}» for injecting into command or UriTemplates. Use «{}»

	Added the ability to passed parameters to all requests created by a client

	Added callback functionality to the ExponentialBackoffPlugin

	Using microtime in ExponentialBackoffPlugin to allow more granular backoff strategies.

	Rewinding request stream bodies when retrying requests

	Exception is thrown when JSON response body cannot be decoded

	Added configurable magic method calls to clients and commands. This is off by default.

	Fixed a defect that added a hash to every parsed URL part

	Fixed duplicate none generation for OauthPlugin.

	Emitting an event each time a client is generated by a ServiceBuilder

	Using an ApiParams object instead of a Collection for parameters of an ApiCommand

	cache.* request parameters should be renamed to params.cache.*

	Added the ability to set arbitrary curl options on requests (disable_wire, progress, etc.). See CurlHandle.

	Added the ability to disable type validation of service descriptions

	ServiceDescriptions and ServiceBuilders are now Serializable

 ![Guzzle](.github/logo.png?raw=true)

Guzzle, PHP HTTP client

[![Latest Version](https://img.shields.io/github/release/guzzle/guzzle.svg?style=flat-square)](https://github.com/guzzle/guzzle/releases)
[![Build Status](https://img.shields.io/github/workflow/status/guzzle/guzzle/CI?label=ci%20build&style=flat-square)](https://github.com/guzzle/guzzle/actions?query=workflow%3ACI)
[![Total Downloads](https://img.shields.io/packagist/dt/guzzlehttp/guzzle.svg?style=flat-square)](https://packagist.org/packages/guzzlehttp/guzzle)

Guzzle is a PHP HTTP client that makes it easy to send HTTP requests and
trivial to integrate with web services.

	Simple interface for building query strings, POST requests, streaming large
uploads, streaming large downloads, using HTTP cookies, uploading JSON data,
etc…

	Can send both synchronous and asynchronous requests using the same interface.

	Uses PSR-7 interfaces for requests, responses, and streams. This allows you
to utilize other PSR-7 compatible libraries with Guzzle.

	Supports PSR-18 allowing interoperability between other PSR-18 HTTP Clients.

	Abstracts away the underlying HTTP transport, allowing you to write
environment and transport agnostic code; i.e., no hard dependency on cURL,
PHP streams, sockets, or non-blocking event loops.

	Middleware system allows you to augment and compose client behavior.


```php
$client = new GuzzleHttpClient();
$response = $client->request(„GET“, „https://api.github.com/repos/guzzle/guzzle“);

echo $response->getStatusCode(); // 200
echo $response->getHeaderLine(„content-type“); // „application/json; charset=utf8“
echo $response->getBody(); // „{«id»: 1420053, «name»: «guzzle», …}“

// Send an asynchronous request.
$request = new GuzzleHttpPsr7Request(„GET“, „http://httpbin.org“);
$promise = $client->sendAsync($request)->then(function ($response) {


echo „I completed! „ . $response->getBody();




});

$promise->wait();
```

Help and docs

We use GitHub issues only to discuss bugs and new features. For support please refer to:

	[Documentation](http://guzzlephp.org/)

	[Stack Overflow](http://stackoverflow.com/questions/tagged/guzzle)

	[#guzzle](https://app.slack.com/client/T0D2S9JCT/CE6UAAKL4) channel on [PHP-HTTP Slack](http://slack.httplug.io/)

	[Gitter](https://gitter.im/guzzle/guzzle)

Installing Guzzle

The recommended way to install Guzzle is through
[Composer](https://getcomposer.org/).

`bash
composer require guzzlehttp/guzzle
`

Version Guidance

Version | Status | Packagist | Namespace | Repo | Docs | PSR-7 | PHP Version |

---------	————	---------------------	————–	---------------------	———————	-------	————-
3.x	EOL	guzzle/guzzle	Guzzle	[v3][guzzle-3-repo]	[v3][guzzle-3-docs]	No	>= 5.3.3
4.x	EOL	guzzlehttp/guzzle	GuzzleHttp	[v4][guzzle-4-repo]	N/A	No	>= 5.4
5.x	EOL	guzzlehttp/guzzle	GuzzleHttp	[v5][guzzle-5-repo]	[v5][guzzle-5-docs]	No	>= 5.4
6.x	Security fixes	guzzlehttp/guzzle	GuzzleHttp	[v6][guzzle-6-repo]	[v6][guzzle-6-docs]	Yes	>= 5.5
7.x	Latest	guzzlehttp/guzzle	GuzzleHttp	[v7][guzzle-7-repo]	[v7][guzzle-7-docs]	Yes	>= 7.2

[guzzle-3-repo]: https://github.com/guzzle/guzzle3
[guzzle-4-repo]: https://github.com/guzzle/guzzle/tree/4.x
[guzzle-5-repo]: https://github.com/guzzle/guzzle/tree/5.3
[guzzle-6-repo]: https://github.com/guzzle/guzzle/tree/6.5
[guzzle-7-repo]: https://github.com/guzzle/guzzle
[guzzle-3-docs]: http://guzzle3.readthedocs.org
[guzzle-5-docs]: http://docs.guzzlephp.org/en/5.3/
[guzzle-6-docs]: http://docs.guzzlephp.org/en/6.5/
[guzzle-7-docs]: http://docs.guzzlephp.org/en/latest/

Security

If you discover a security vulnerability within this package, please send an email to security@tidelift.com. All security vulnerabilities will be promptly addressed. Please do not disclose security-related issues publicly until a fix has been announced. Please see [Security Policy](https://github.com/guzzle/guzzle/security/policy) for more information.

License

Guzzle is made available under the MIT License (MIT). Please see [License File](LICENSE) for more information.

For Enterprise

Available as part of the Tidelift Subscription

The maintainers of Guzzle and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use. [Learn more.](https://tidelift.com/subscription/pkg/packagist-guzzlehttp-guzzle?utm_source=packagist-guzzlehttp-guzzle&utm_medium=referral&utm_campaign=enterprise&utm_term=repo)

Guzzle Upgrade Guide

6.0 to 7.0

In order to take advantage of the new features of PHP, Guzzle dropped the support
of PHP 5. The minimum supported PHP version is now PHP 7.2. Type hints and return
types for functions and methods have been added wherever possible.

Please make sure:
- You are calling a function or a method with the correct type.
- If you extend a class of Guzzle; update all signatures on methods you override.

Other backwards compatibility breaking changes

	Class GuzzleHttpUriTemplate is removed.

	Class GuzzleHttpExceptionSeekException is removed.

	Classes GuzzleHttpExceptionBadResponseException, GuzzleHttpExceptionClientException,
GuzzleHttpExceptionServerException can no longer be initialized with an empty
Response as argument.

	Class GuzzleHttpExceptionConnectException now extends GuzzleHttpExceptionTransferException
instead of GuzzleHttpExceptionRequestException.

	Function GuzzleHttpExceptionConnectException::getResponse() is removed.

	Function GuzzleHttpExceptionConnectException::hasResponse() is removed.

	Constant GuzzleHttpClientInterface::VERSION is removed. Added GuzzleHttpClientInterface::MAJOR_VERSION instead.

	Function GuzzleHttpExceptionRequestException::getResponseBodySummary is removed.
Use GuzzleHttpPsr7get_message_body_summary as an alternative.

	Function GuzzleHttpCookieCookieJar::getCookieValue is removed.

	Request option exception is removed. Please use http_errors.

	Request option save_to is removed. Please use sink.

	Pool option pool_size is removed. Please use concurrency.

	We now look for environment variables in the $_SERVER super global, due to thread safety issues with getenv. We continue to fallback to getenv in CLI environments, for maximum compatibility.

	The get, head, put, post, patch, delete, getAsync, headAsync, putAsync, postAsync, patchAsync, and deleteAsync methods are now implemented as genuine methods on GuzzleHttpClient, with strong typing. The original __call implementation remains unchanged for now, for maximum backwards compatibility, but won’t be invoked under normal operation.

	The log middleware will log the errors with level error instead of notice

	Support for international domain names (IDN) is now disabled by default, and enabling it requires installing ext-intl, linked against a modern version of the C library (ICU 4.6 or higher).

Native functions calls

All internal native functions calls of Guzzle are now prefixed with a slash. This
change makes it impossible for method overloading by other libraries or applications.
Example:

```php
// Before:
curl_version();

// After:
curl_version();
```

For the full diff you can check [here](https://github.com/guzzle/guzzle/compare/6.5.4..master).

5.0 to 6.0

Guzzle now uses [PSR-7](https://www.php-fig.org/psr/psr-7/) for HTTP messages.
Due to the fact that these messages are immutable, this prompted a refactoring
of Guzzle to use a middleware based system rather than an event system. Any
HTTP message interaction (e.g., GuzzleHttpMessageRequest) need to be
updated to work with the new immutable PSR-7 request and response objects. Any
event listeners or subscribers need to be updated to become middleware
functions that wrap handlers (or are injected into a
GuzzleHttpHandlerStack).

	Removed GuzzleHttpBatchResults

	Removed GuzzleHttpCollection

	Removed GuzzleHttpHasDataTrait

	Removed GuzzleHttpToArrayInterface

	The guzzlehttp/streams dependency has been removed. Stream functionality
is now present in the GuzzleHttpPsr7 namespace provided by the
guzzlehttp/psr7 package.

	Guzzle no longer uses ReactPHP promises and now uses the
guzzlehttp/promises library. We use a custom promise library for three
significant reasons:
1. React promises (at the time of writing this) are recursive. Promise

chaining and promise resolution will eventually blow the stack. Guzzle
promises are not recursive as they use a sort of trampolining technique.
Note: there has been movement in the React project to modify promises to
no longer utilize recursion.

	Guzzle needs to have the ability to synchronously block on a promise to
wait for a result. Guzzle promises allows this functionality (and does
not require the use of recursion).

	Because we need to be able to wait on a result, doing so using React
promises requires wrapping react promises with RingPHP futures. This
overhead is no longer needed, reducing stack sizes, reducing complexity,
and improving performance.

	GuzzleHttpMimetypes has been moved to a function in
GuzzleHttpPsr7mimetype_from_extension and
GuzzleHttpPsr7mimetype_from_filename.

	GuzzleHttpQuery and GuzzleHttpQueryParser have been removed. Query
strings must now be passed into request objects as strings, or provided to
the query request option when creating requests with clients. The query
option uses PHP’s http_build_query to convert an array to a string. If you
need a different serialization technique, you will need to pass the query
string in as a string. There are a couple helper functions that will make
working with query strings easier: GuzzleHttpPsr7parse_query and
GuzzleHttpPsr7build_query.

	Guzzle no longer has a dependency on RingPHP. Due to the use of a middleware
system based on PSR-7, using RingPHP and it’s middleware system as well adds
more complexity than the benefits it provides. All HTTP handlers that were
present in RingPHP have been modified to work directly with PSR-7 messages
and placed in the GuzzleHttpHandler namespace. This significantly reduces
complexity in Guzzle, removes a dependency, and improves performance. RingPHP
will be maintained for Guzzle 5 support, but will no longer be a part of
Guzzle 6.

	As Guzzle now uses a middleware based systems the event system and RingPHP
integration has been removed. Note: while the event system has been removed,
it is possible to add your own type of event system that is powered by the
middleware system.
- Removed the Event namespace.
- Removed the Subscriber namespace.
- Removed Transaction class
- Removed RequestFsm
- Removed RingBridge
- GuzzleHttpSubscriberCookie is now provided by

GuzzleHttpMiddleware::cookies

	GuzzleHttpSubscriberHttpError is now provided by
GuzzleHttpMiddleware::httpError

	GuzzleHttpSubscriberHistory is now provided by
GuzzleHttpMiddleware::history

	GuzzleHttpSubscriberMock is now provided by
GuzzleHttpHandlerMockHandler

	GuzzleHttpSubscriberPrepare is now provided by
GuzzleHttpPrepareBodyMiddleware

	GuzzleHttpSubscriberRedirect is now provided by
GuzzleHttpRedirectMiddleware

	Guzzle now uses PsrHttpMessageUriInterface (implements in
GuzzleHttpPsr7Uri) for URI support. GuzzleHttpUrl is now gone.

	Static functions in GuzzleHttpUtils have been moved to namespaced
functions under the GuzzleHttp namespace. This requires either a Composer
based autoloader or you to include functions.php.

	GuzzleHttpClientInterface::getDefaultOption has been renamed to
GuzzleHttpClientInterface::getConfig.

	GuzzleHttpClientInterface::setDefaultOption has been removed.

	The json and xml methods of response objects has been removed. With the
migration to strictly adhering to PSR-7 as the interface for Guzzle messages,
adding methods to message interfaces would actually require Guzzle messages
to extend from PSR-7 messages rather then work with them directly.

Migrating to middleware

The change to PSR-7 unfortunately required significant refactoring to Guzzle
due to the fact that PSR-7 messages are immutable. Guzzle 5 relied on an event
system from plugins. The event system relied on mutability of HTTP messages and
side effects in order to work. With immutable messages, you have to change your
workflow to become more about either returning a value (e.g., functional
middlewares) or setting a value on an object. Guzzle v6 has chosen the
functional middleware approach.

Instead of using the event system to listen for things like the before event,
you now create a stack based middleware function that intercepts a request on
the way in and the promise of the response on the way out. This is a much
simpler and more predictable approach than the event system and works nicely
with PSR-7 middleware. Due to the use of promises, the middleware system is
also asynchronous.

v5:

```php
use GuzzleHttpEventBeforeEvent;
$client = new GuzzleHttpClient();
// Get the emitter and listen to the before event.
$client->getEmitter()->on(„before“, function (BeforeEvent $e) {


// Guzzle v5 events relied on mutation
$e->getRequest()->setHeader(„X-Foo“, „Bar“);





});

v6:

In v6, you can modify the request before it is sent using the mapRequest
middleware. The idiomatic way in v6 to modify the request/response lifecycle is
to setup a handler middleware stack up front and inject the handler into a
client.

```php
use GuzzleHttpMiddleware;
// Create a handler stack that has all of the default middlewares attached
$handler = GuzzleHttpHandlerStack::create();
// Push the handler onto the handler stack
$handler->push(Middleware::mapRequest(function (RequestInterface $request) {

// Notice that we have to return a request object
return $request->withHeader(„X-Foo“, „Bar“);

}));
// Inject the handler into the client
$client = new GuzzleHttpClient([„handler“ => $handler]);
```

## POST Requests

This version added the [form_params](http://guzzle.readthedocs.org/en/latest/request-options.html#form_params)
and multipart request options. form_params is an associative array of
strings or array of strings and is used to serialize an
application/x-www-form-urlencoded POST request. The
[multipart](http://guzzle.readthedocs.org/en/latest/request-options.html#multipart)
option is now used to send a multipart/form-data POST request.

GuzzleHttpPostPostFile has been removed. Use the multipart option to add
POST files to a multipart/form-data request.

The body option no longer accepts an array to send POST requests. Please use
multipart or form_params instead.

The base_url option has been renamed to base_uri.




4.x to 5.0

## Rewritten Adapter Layer

Guzzle now uses [RingPHP](http://ringphp.readthedocs.org/en/latest) to send
HTTP requests. The adapter option in a GuzzleHttpClient constructor
is still supported, but it has now been renamed to handler. Instead of
passing a GuzzleHttpAdapterAdapterInterface, you must now pass a PHP
callable that follows the RingPHP specification.

## Removed Fluent Interfaces

[Fluent interfaces were removed](https://ocramius.github.io/blog/fluent-interfaces-are-evil/)
from the following classes:


	GuzzleHttpCollection


	GuzzleHttpUrl


	GuzzleHttpQuery


	GuzzleHttpPostPostBody


	GuzzleHttpCookieSetCookie




## Removed functions.php

Removed «functions.php», so that Guzzle is truly PSR-4 compliant. The following
functions can be used as replacements.


	GuzzleHttpjson_decode -> GuzzleHttpUtils::jsonDecode


	GuzzleHttpget_path -> GuzzleHttpUtils::getPath


	GuzzleHttpUtils::setPath -> GuzzleHttpset_path


	GuzzleHttpPool::batch -> GuzzleHttpbatch. This function is, however,
deprecated in favor of using GuzzleHttpPool::batch().




The «procedural» global client has been removed with no replacement (e.g.,
GuzzleHttpget(), GuzzleHttppost(), etc.). Use a GuzzleHttpClient
object as a replacement.

## throwImmediately has been removed

The concept of «throwImmediately» has been removed from exceptions and error
events. This control mechanism was used to stop a transfer of concurrent
requests from completing. This can now be handled by throwing the exception or
by cancelling a pool of requests or each outstanding future request
individually.

## headers event has been removed

Removed the «headers» event. This event was only useful for changing the
body a response once the headers of the response were known. You can implement
a similar behavior in a number of ways. One example might be to use a
FnStream that has access to the transaction being sent. For example, when the
first byte is written, you could check if the response headers match your
expectations, and if so, change the actual stream body that is being
written to.

## Updates to HTTP Messages

Removed the asArray parameter from
GuzzleHttpMessageMessageInterface::getHeader. If you want to get a header
value as an array, then use the newly added getHeaderAsArray() method of
MessageInterface. This change makes the Guzzle interfaces compatible with
the PSR-7 interfaces.



3.x to 4.0

## Overarching changes:


	Now requires PHP 5.4 or greater.


	No longer requires cURL to send requests.


	Guzzle no longer wraps every exception it throws. Only exceptions that are
recoverable are now wrapped by Guzzle.


	Various namespaces have been removed or renamed.


	No longer requiring the Symfony EventDispatcher. A custom event dispatcher
based on the Symfony EventDispatcher is
now utilized in GuzzleHttpEventEmitterInterface (resulting in significant
speed and functionality improvements).




Changes per Guzzle 3.x namespace are described below.

## Batch

The GuzzleBatch namespace has been removed. This is best left to
third-parties to implement on top of Guzzle’s core HTTP library.

## Cache

The GuzzleCache namespace has been removed. (Todo: No suitable replacement
has been implemented yet, but hoping to utilize a PSR cache interface).

## Common


	Removed all of the wrapped exceptions. It’s better to use the standard PHP
library for unrecoverable exceptions.


	FromConfigInterface has been removed.


	GuzzleCommonVersion has been removed. The VERSION constant can be found
at GuzzleHttpClientInterface::VERSION.




### Collection


	getAll has been removed. Use toArray to convert a collection to an array.


	inject has been removed.


	keySearch has been removed.


	getPath no longer supports wildcard expressions. Use something better like
JMESPath for this.


	setPath now supports appending to an existing array via the [] notation.




### Events

Guzzle no longer requires Symfony’s EventDispatcher component. Guzzle now uses
GuzzleHttpEventEmitter.


	SymfonyComponentEventDispatcherEventDispatcherInterface is replaced by
GuzzleHttpEventEmitterInterface.


	SymfonyComponentEventDispatcherEventDispatcher is replaced by
GuzzleHttpEventEmitter.


	SymfonyComponentEventDispatcherEvent is replaced by
GuzzleHttpEventEvent, and Guzzle now has an EventInterface in
GuzzleHttpEventEventInterface.


	AbstractHasDispatcher has moved to a trait, HasEmitterTrait, and
HasDispatcherInterface has moved to HasEmitterInterface. Retrieving the
event emitter of a request, client, etc. now uses the getEmitter method
rather than the getDispatcher method.




#### Emitter


	Use the once() method to add a listener that automatically removes itself
the first time it is invoked.


	Use the listeners() method to retrieve a list of event listeners rather than
the getListeners() method.


	Use emit() instead of dispatch() to emit an event from an emitter.


	Use attach() instead of addSubscriber() and detach() instead of
removeSubscriber().




`php
$mock = new Mock();
// 3.x
$request->getEventDispatcher()->addSubscriber($mock);
$request->getEventDispatcher()->removeSubscriber($mock);
// 4.x
$request->getEmitter()->attach($mock);
$request->getEmitter()->detach($mock);
`

Use the on() method to add a listener rather than the addListener() method.

`php
// 3.x
$request->getEventDispatcher()->addListener('foo', function (Event $event) { /* ... */ } );
// 4.x
$request->getEmitter()->on('foo', function (Event $event, $name) { /* ... */ } );
`

## Http

### General changes


	The cacert.pem certificate has been moved to src/cacert.pem.


	Added the concept of adapters that are used to transfer requests over the
wire.


	Simplified the event system.


	Sending requests in parallel is still possible, but batching is no longer a
concept of the HTTP layer. Instead, you must use the complete and error
events to asynchronously manage parallel request transfers.


	GuzzleHttpUrl has moved to GuzzleHttpUrl.


	GuzzleHttpQueryString has moved to GuzzleHttpQuery.


	QueryAggregators have been rewritten so that they are simply callable
functions.


	GuzzleHttpStaticClient has been removed. Use the functions provided in
functions.php for an easy to use static client instance.


	Exceptions in GuzzleHttpException have been updated to all extend from
GuzzleHttpExceptionTransferException.




### Client

Calling methods like get(), post(), head(), etc. no longer create and
return a request, but rather creates a request, sends the request, and returns
the response.

```php
// 3.0
$request = $client->get(„/“);
$response = $request->send();

// 4.0
$response = $client->get(„/“);

// or, to mirror the previous behavior
$request = $client->createRequest(„GET“, „/“);
$response = $client->send($request);
```

GuzzleHttpClientInterface has changed.


	The send method no longer accepts more than one request. Use sendAll to
send multiple requests in parallel.


	setUserAgent() has been removed. Use a default request option instead. You
could, for example, do something like:
$client->setConfig(„defaults/headers/User-Agent“, „Foo/Bar „ . $client::getDefaultUserAgent()).


	setSslVerification() has been removed. Use default request options instead,
like $client->setConfig(„defaults/verify“, true).




GuzzleHttpClient has changed.


	The constructor now accepts only an associative array. You can include a
base_url string or array to use a URI template as the base URL of a client.
You can also specify a defaults key that is an associative array of default
request options. You can pass an adapter to use a custom adapter,
batch_adapter to use a custom adapter for sending requests in parallel, or
a message_factory to change the factory used to create HTTP requests and
responses.


	The client no longer emits a client.create_request event.


	Creating requests with a client no longer automatically utilize a URI
template. You must pass an array into a creational method (e.g.,
createRequest, get, put, etc.) in order to expand a URI template.




### Messages

Messages no longer have references to their counterparts (i.e., a request no
longer has a reference to it’s response, and a response no loger has a
reference to its request). This association is now managed through a
GuzzleHttpAdapterTransactionInterface object. You can get references to
these transaction objects using request events that are emitted over the
lifecycle of a request.

#### Requests with a body


	GuzzleHttpMessageEntityEnclosingRequest and
GuzzleHttpMessageEntityEnclosingRequestInterface have been removed. The
separation between requests that contain a body and requests that do not
contain a body has been removed, and now GuzzleHttpMessageRequestInterface
handles both use cases.


	Any method that previously accepts a GuzzleHttpResponse object now accept a
GuzzleHttpMessageResponseInterface.


	GuzzleHttpMessageRequestFactoryInterface has been renamed to
GuzzleHttpMessageMessageFactoryInterface. This interface is used to create
both requests and responses and is implemented in
GuzzleHttpMessageMessageFactory.


	POST field and file methods have been removed from the request object. You
must now use the methods made available to GuzzleHttpPostPostBodyInterface
to control the format of a POST body. Requests that are created using a
standard GuzzleHttpMessageMessageFactoryInterface will automatically use
a GuzzleHttpPostPostBody body if the body was passed as an array or if
the method is POST and no body is provided.




`php
$request = $client->createRequest('POST', '/');
$request->getBody()->setField('foo', 'bar');
$request->getBody()->addFile(new PostFile('file_key', fopen('/path/to/content', 'r')));
`

#### Headers


	GuzzleHttpMessageHeader has been removed. Header values are now simply
represented by an array of values or as a string. Header values are returned
as a string by default when retrieving a header value from a message. You can
pass an optional argument of true to retrieve a header value as an array
of strings instead of a single concatenated string.


	GuzzleHttpPostFile and GuzzleHttpPostFileInterface have been moved to
GuzzleHttpPost. This interface has been simplified and now allows the
addition of arbitrary headers.


	Custom headers like GuzzleHttpMessageHeaderLink have been removed. Most
of the custom headers are now handled separately in specific
subscribers/plugins, and GuzzleHttpMessageHeaderValues::parseParams() has
been updated to properly handle headers that contain parameters (like the
Link header).




#### Responses


	GuzzleHttpMessageResponse::getInfo() and
GuzzleHttpMessageResponse::setInfo() have been removed. Use the event
system to retrieve this type of information.


	GuzzleHttpMessageResponse::getRawHeaders() has been removed.


	GuzzleHttpMessageResponse::getMessage() has been removed.


	GuzzleHttpMessageResponse::calculateAge() and other cache specific
methods have moved to the CacheSubscriber.


	Header specific helper functions like getContentMd5() have been removed.
Just use getHeader(„Content-MD5“) instead.


	GuzzleHttpMessageResponse::setRequest() and
GuzzleHttpMessageResponse::getRequest() have been removed. Use the event
system to work with request and response objects as a transaction.


	GuzzleHttpMessageResponse::getRedirectCount() has been removed. Use the
Redirect subscriber instead.


	GuzzleHttpMessageResponse::isSuccessful() and other related methods have
been removed. Use getStatusCode() instead.




#### Streaming responses

Streaming requests can now be created by a client directly, returning a
GuzzleHttpMessageResponseInterface object that contains a body stream
referencing an open PHP HTTP stream.

```php
// 3.0
use GuzzleStreamPhpStreamRequestFactory;
$request = $client->get(„/“);
$factory = new PhpStreamRequestFactory();
$stream = $factory->fromRequest($request);
$data = $stream->read(1024);

// 4.0
$response = $client->get(„/“, [„stream“ => true]);
// Read some data off of the stream in the response body
$data = $response->getBody()->read(1024);
```

#### Redirects

The configureRedirects() method has been removed in favor of a
allow_redirects request option.

```php
// Standard redirects with a default of a max of 5 redirects
$request = $client->createRequest(„GET“, „/“, [„allow_redirects“ => true]);

// Strict redirects with a custom number of redirects
$request = $client->createRequest(„GET“, „/“, [

„allow_redirects“ => [„max“ => 5, „strict“ => true]

]);

EntityBody

EntityBody interfaces and classes have been removed or moved to
GuzzleHttpStream. All classes and interfaces that once required
GuzzleHttpEntityBodyInterface now require
GuzzleHttpStreamStreamInterface. Creating a new body for a request no
longer uses GuzzleHttpEntityBody::factory but now uses
GuzzleHttpStreamStream::factory or even better:
GuzzleHttpStreamcreate().

	GuzzleHttpEntityBodyInterface is now GuzzleHttpStreamStreamInterface

	GuzzleHttpEntityBody is now GuzzleHttpStreamStream

	GuzzleHttpCachingEntityBody is now GuzzleHttpStreamCachingStream

	GuzzleHttpReadLimitEntityBody is now GuzzleHttpStreamLimitStream

	GuzzleHttpIoEmittyinEntityBody has been removed.

Request lifecycle events

Requests previously submitted a large number of requests. The number of events
emitted over the lifecycle of a request has been significantly reduced to make
it easier to understand how to extend the behavior of a request. All events
emitted during the lifecycle of a request now emit a custom
GuzzleHttpEventEventInterface object that contains context providing
methods and a way in which to modify the transaction at that specific point in
time (e.g., intercept the request and set a response on the transaction).

	request.before_send has been renamed to before and now emits a
GuzzleHttpEventBeforeEvent

	request.complete has been renamed to complete and now emits a
GuzzleHttpEventCompleteEvent.

	request.sent has been removed. Use complete.

	request.success has been removed. Use complete.

	error is now an event that emits a GuzzleHttpEventErrorEvent.

	request.exception has been removed. Use error.

	request.receive.status_line has been removed.

	curl.callback.progress has been removed. Use a custom StreamInterface to
maintain a status update.

	curl.callback.write has been removed. Use a custom StreamInterface to
intercept writes.

	curl.callback.read has been removed. Use a custom StreamInterface to
intercept reads.

headers is a new event that is emitted after the response headers of a
request have been received before the body of the response is downloaded. This
event emits a GuzzleHttpEventHeadersEvent.

You can intercept a request and inject a response using the intercept() event
of a GuzzleHttpEventBeforeEvent, GuzzleHttpEventCompleteEvent, and
GuzzleHttpEventErrorEvent event.

See: http://docs.guzzlephp.org/en/latest/events.html

Inflection

The GuzzleInflection namespace has been removed. This is not a core concern
of Guzzle.

Iterator

The GuzzleIterator namespace has been removed.

	GuzzleIteratorAppendIterator, GuzzleIteratorChunkedIterator, and
GuzzleIteratorMethodProxyIterator are nice, but not a core requirement of
Guzzle itself.

	GuzzleIteratorFilterIterator is no longer needed because an equivalent
class is shipped with PHP 5.4.

	GuzzleIteratorMapIterator is not really needed when using PHP 5.5 because
it’s easier to just wrap an iterator in a generator that maps values.

For a replacement of these iterators, see https://github.com/nikic/iter

Log

The LogPlugin has moved to https://github.com/guzzle/log-subscriber. The
GuzzleLog namespace has been removed. Guzzle now relies on
PsrLogLoggerInterface for all logging. The MessageFormatter class has been
moved to GuzzleHttpSubscriberLogFormatter.

Parser

The GuzzleParser namespace has been removed. This was previously used to
make it possible to plug in custom parsers for cookies, messages, URI
templates, and URLs; however, this level of complexity is not needed in Guzzle
so it has been removed.

	Cookie: Cookie parsing logic has been moved to
GuzzleHttpCookieSetCookie::fromString.

	Message: Message parsing logic for both requests and responses has been moved
to GuzzleHttpMessageMessageFactory::fromMessage. Message parsing is only
used in debugging or deserializing messages, so it doesn’t make sense for
Guzzle as a library to add this level of complexity to parsing messages.

	UriTemplate: URI template parsing has been moved to
GuzzleHttpUriTemplate. The Guzzle library will automatically use the PECL
URI template library if it is installed.

	Url: URL parsing is now performed in GuzzleHttpUrl::fromString (previously
it was GuzzleHttpUrl::factory()). If custom URL parsing is necessary,
then developers are free to subclass GuzzleHttpUrl.

Plugin

The GuzzlePlugin namespace has been renamed to GuzzleHttpSubscriber.
Several plugins are shipping with the core Guzzle library under this namespace.

	GuzzleHttpSubscriberCookie: Replaces the old CookiePlugin. Cookie jar
code has moved to GuzzleHttpCookie.

	GuzzleHttpSubscriberHistory: Replaces the old HistoryPlugin.

	GuzzleHttpSubscriberHttpError: Throws errors when a bad HTTP response is
received.

	GuzzleHttpSubscriberMock: Replaces the old MockPlugin.

	GuzzleHttpSubscriberPrepare: Prepares the body of a request just before
sending. This subscriber is attached to all requests by default.

	GuzzleHttpSubscriberRedirect: Replaces the RedirectPlugin.

The following plugins have been removed (third-parties are free to re-implement
these if needed):

	GuzzleHttpPluginAsync has been removed.

	GuzzleHttpPluginCurlAuth has been removed.

	GuzzleHttpPluginErrorResponseErrorResponsePlugin has been removed. This
functionality should instead be implemented with event listeners that occur
after normal response parsing occurs in the guzzle/command package.

The following plugins are not part of the core Guzzle package, but are provided
in separate repositories:

	GuzzleHttpPluginBackoffPlugin has been rewritten to be much simpler
to build custom retry policies using simple functions rather than various
chained classes. See: https://github.com/guzzle/retry-subscriber

	GuzzleHttpPluginCacheCachePlugin has moved to
https://github.com/guzzle/cache-subscriber

	GuzzleHttpPluginLogLogPlugin has moved to
https://github.com/guzzle/log-subscriber

	GuzzleHttpPluginMd5Md5Plugin has moved to
https://github.com/guzzle/message-integrity-subscriber

	GuzzleHttpPluginMockMockPlugin has moved to
GuzzleHttpSubscriberMockSubscriber.

	GuzzleHttpPluginOauthOauthPlugin has moved to
https://github.com/guzzle/oauth-subscriber

Service

The service description layer of Guzzle has moved into two separate packages:

	http://github.com/guzzle/command Provides a high level abstraction over web
services by representing web service operations using commands.

	http://github.com/guzzle/guzzle-services Provides an implementation of
guzzle/command that provides request serialization and response parsing using
Guzzle service descriptions.

Stream

Stream have moved to a separate package available at
https://github.com/guzzle/streams.

GuzzleStreamStreamInterface has been given a large update to cleanly take
on the responsibilities of GuzzleHttpEntityBody and
GuzzleHttpEntityBodyInterface now that they have been removed. The number
of methods implemented by the StreamInterface has been drastically reduced to
allow developers to more easily extend and decorate stream behavior.

Removed methods from StreamInterface

	getStream and setStream have been removed to better encapsulate streams.

	getMetadata and setMetadata have been removed in favor of
GuzzleHttpStreamMetadataStreamInterface.

	getWrapper, getWrapperData, getStreamType, and getUri have all been
removed. This data is accessible when
using streams that implement GuzzleHttpStreamMetadataStreamInterface.

	rewind has been removed. Use seek(0) for a similar behavior.

Renamed methods

	detachStream has been renamed to detach.

	feof has been renamed to eof.

	ftell has been renamed to tell.

	readLine has moved from an instance method to a static class method of
GuzzleHttpStreamStream.

Metadata streams

GuzzleHttpStreamMetadataStreamInterface has been added to denote streams
that contain additional metadata accessible via getMetadata().
GuzzleHttpStreamStreamInterface::getMetadata and
GuzzleHttpStreamStreamInterface::setMetadata have been removed.

StreamRequestFactory

The entire concept of the StreamRequestFactory has been removed. The way this
was used in Guzzle 3 broke the actual interface of sending streaming requests
(instead of getting back a Response, you got a StreamInterface). Streaming
PHP requests are now implemented through the GuzzleHttpAdapterStreamAdapter.

3.6 to 3.7

Deprecations

	You can now enable E_USER_DEPRECATED warnings to see if you are using any deprecated methods.:

`php
\Guzzle\Common\Version::$emitWarnings = true;
`

The following APIs and options have been marked as deprecated:

	Marked GuzzleHttpMessageRequest::isResponseBodyRepeatable() as deprecated. Use $request->getResponseBody()->isRepeatable() instead.

	Marked GuzzleHttpMessageRequest::canCache() as deprecated. Use GuzzlePluginCacheDefaultCanCacheStrategy->canCacheRequest() instead.

	Marked GuzzleHttpMessageRequest::canCache() as deprecated. Use GuzzlePluginCacheDefaultCanCacheStrategy->canCacheRequest() instead.

	Marked GuzzleHttpMessageRequest::setIsRedirect() as deprecated. Use the HistoryPlugin instead.

	Marked GuzzleHttpMessageRequest::isRedirect() as deprecated. Use the HistoryPlugin instead.

	Marked GuzzleCacheCacheAdapterFactory::factory() as deprecated

	Marked GuzzleServiceClient::enableMagicMethods() as deprecated. Magic methods can no longer be disabled on a GuzzleServiceClient.

	Marked GuzzleParserUrlUrlParser as deprecated. Just use PHP’s parse_url() and percent encode your UTF-8.

	Marked GuzzleCommonCollection::inject() as deprecated.

	Marked GuzzlePluginCurlAuthCurlAuthPlugin as deprecated. Use
$client->getConfig()->setPath(„request.options/auth“, array(„user“, „pass“, „Basic|Digest|NTLM|Any“)); or
$client->setDefaultOption(„auth“, array(„user“, „pass“, „Basic|Digest|NTLM|Any“));

3.7 introduces request.options as a parameter for a client configuration and as an optional argument to all creational
request methods. When paired with a client’s configuration settings, these options allow you to specify default settings
for various aspects of a request. Because these options make other previous configuration options redundant, several
configuration options and methods of a client and AbstractCommand have been deprecated.

	Marked GuzzleServiceClient::getDefaultHeaders() as deprecated. Use $client->getDefaultOption(„headers“).

	Marked GuzzleServiceClient::setDefaultHeaders() as deprecated. Use $client->setDefaultOption(„headers/{header_name}“, „value“).

	Marked „request.params“ for GuzzleHttpClient as deprecated. Use $client->setDefaultOption(„params/{param_name}“, „value“)

	Marked „command.headers“, „command.response_body“ and „command.on_complete“ as deprecated for AbstractCommand. These will work through Guzzle 4.0

	$command = $client->getCommand(„foo“, array(
	„command.headers“ => array(„Test“ => „123“),
„command.response_body“ => „/path/to/file“

));

// Should be changed to:

	$command = $client->getCommand(„foo“, array(
	
	„command.request_options“ => array(
	„headers“ => array(„Test“ => „123“),
„save_as“ => „/path/to/file“

)

));

Interface changes

Additions and changes (you will need to update any implementations or subclasses you may have created):

	Added an $options argument to the end of the following methods of GuzzleHttpClientInterface:
createRequest, head, delete, put, patch, post, options, prepareRequest

	Added an $options argument to the end of GuzzleHttpMessageRequestRequestFactoryInterface::createRequest()

	Added an applyOptions() method to GuzzleHttpMessageRequestRequestFactoryInterface

	Changed GuzzleHttpClientInterface::get($uri = null, $headers = null, $body = null) to
GuzzleHttpClientInterface::get($uri = null, $headers = null, $options = array()). You can still pass in a
resource, string, or EntityBody into the $options parameter to specify the download location of the response.

	Changed GuzzleCommonCollection::__construct($data) to no longer accepts a null value for $data but a
default array()

	Added GuzzleStreamStreamInterface::isRepeatable

	Made GuzzleHttpClient::expandTemplate and getUriTemplate protected methods.

The following methods were removed from interfaces. All of these methods are still available in the concrete classes
that implement them, but you should update your code to use alternative methods:

	Removed GuzzleHttpClientInterface::setDefaultHeaders(). Use
`$client->getConfig()->setPath(„request.options/headers/{header_name}“, „value“). or
$client->getConfig()->setPath(„request.options/headers“, array(„header_name“ => „value“)) or
$client->setDefaultOption(„headers/{header_name}“, „value“). or
$client->setDefaultOption(„headers“, array(„header_name“ => „value“)).

	Removed GuzzleHttpClientInterface::getDefaultHeaders(). Use `$client->getConfig()->getPath(„request.options/headers“).

	Removed GuzzleHttpClientInterface::expandTemplate(). This is an implementation detail.

	Removed GuzzleHttpClientInterface::setRequestFactory(). This is an implementation detail.

	Removed GuzzleHttpClientInterface::getCurlMulti(). This is a very specific implementation detail.

	Removed GuzzleHttpMessageRequestInterface::canCache. Use the CachePlugin.

	Removed GuzzleHttpMessageRequestInterface::setIsRedirect. Use the HistoryPlugin.

	Removed GuzzleHttpMessageRequestInterface::isRedirect. Use the HistoryPlugin.

Cache plugin breaking changes

	CacheKeyProviderInterface and DefaultCacheKeyProvider are no longer used. All of this logic is handled in a
CacheStorageInterface. These two objects and interface will be removed in a future version.

	Always setting X-cache headers on cached responses

	Default cache TTLs are now handled by the CacheStorageInterface of a CachePlugin

	CacheStorageInterface::cache($key, Response $response, $ttl = null) has changed to cache(RequestInterface
$request, Response $response);

	CacheStorageInterface::fetch($key) has changed to fetch(RequestInterface $request);

	CacheStorageInterface::delete($key) has changed to delete(RequestInterface $request);

	Added CacheStorageInterface::purge($url)

	DefaultRevalidation::__construct(CacheKeyProviderInterface $cacheKey, CacheStorageInterface $cache, CachePlugin
$plugin) has changed to DefaultRevalidation::__construct(CacheStorageInterface $cache,
CanCacheStrategyInterface $canCache = null)

	Added RevalidationInterface::shouldRevalidate(RequestInterface $request, Response $response)

3.5 to 3.6

	Mixed casing of headers are now forced to be a single consistent casing across all values for that header.

	Messages internally use a HeaderCollection object to delegate handling case-insensitive header resolution

	Removed the whole changedHeader() function system of messages because all header changes now go through addHeader().
For example, setHeader() first removes the header using unset on a HeaderCollection and then calls addHeader().
Keeping the Host header and URL host in sync is now handled by overriding the addHeader method in Request.

	Specific header implementations can be created for complex headers. When a message creates a header, it uses a
HeaderFactory which can map specific headers to specific header classes. There is now a Link header and
CacheControl header implementation.

	Moved getLinks() from Response to just be used on a Link header object.

If you previously relied on GuzzleHttpMessageHeader::raw(), then you will need to update your code to use the
HeaderInterface (e.g. toArray(), getAll(), etc.).

Interface changes

	Removed from interface: GuzzleHttpClientInterface::setUriTemplate

	Removed from interface: GuzzleHttpClientInterface::setCurlMulti()

	Removed GuzzleHttpMessageRequest::receivedRequestHeader() and implemented this functionality in
GuzzleHttpCurlRequestMediator

	Removed the optional $asString parameter from MessageInterface::getHeader(). Just cast the header to a string.

	Removed the optional $tryChunkedTransfer option from GuzzleHttpMessageEntityEnclosingRequestInterface

	Removed the $asObjects argument from GuzzleHttpMessageMessageInterface::getHeaders()

Removed deprecated functions

	Removed GuzzleParserParserRegister::get(). Use getParser()

	Removed GuzzleParserParserRegister::set(). Use registerParser().

Deprecations

	The ability to case-insensitively search for header values

	GuzzleHttpMessageHeader::hasExactHeader

	GuzzleHttpMessageHeader::raw. Use getAll()

	Deprecated cache control specific methods on GuzzleHttpMessageAbstractMessage. Use the CacheControl header object
instead.

Other changes

	All response header helper functions return a string rather than mixing Header objects and strings inconsistently

	Removed cURL blacklist support. This is no longer necessary now that Expect, Accept, etc. are managed by Guzzle
directly via interfaces

	Removed the injecting of a request object onto a response object. The methods to get and set a request still exist
but are a no-op until removed.

	Most classes that used to require a GuzzleServiceCommandCommandInterface typehint now request a
GuzzleServiceCommandArrayCommandInterface.

	Added GuzzleHttpMessageRequestInterface::startResponse() to the RequestInterface to handle injecting a response
on a request while the request is still being transferred

	GuzzleServiceCommandCommandInterface now extends from ToArrayInterface and ArrayAccess

3.3 to 3.4

Base URLs of a client now follow the rules of https://tools.ietf.org/html/rfc3986#section-5.2.2 when merging URLs.

3.2 to 3.3

Response::getEtag() quote stripping removed

GuzzleHttpMessageResponse::getEtag() no longer strips quotes around the ETag response header

Removed GuzzleHttpUtils

The GuzzleHttpUtils class was removed. This class was only used for testing.

Stream wrapper and type

GuzzleStreamStream::getWrapper() and GuzzleStreamStream::getStreamType() are no longer converted to lowercase.

curl.emit_io became emit_io

Emitting IO events from a RequestMediator is now a parameter that must be set in a request’s curl options using the
„emit_io“ key. This was previously set under a request’s parameters using „curl.emit_io“

3.1 to 3.2

CurlMulti is no longer reused globally

Before 3.2, the same CurlMulti object was reused globally for each client. This can cause issue where plugins added
to a single client can pollute requests dispatched from other clients.

If you still wish to reuse the same CurlMulti object with each client, then you can add a listener to the
ServiceBuilder’s service_builder.create_client event to inject a custom CurlMulti object into each client as it is
created.

```php
$multi = new GuzzleHttpCurlCurlMulti();
$builder = GuzzleServiceBuilderServiceBuilder::factory(„/path/to/config.json“);
$builder->addListener(„service_builder.create_client“, function ($event) use ($multi) {


$event[„client“]->setCurlMulti($multi);




}
});
```

No default path

URLs no longer have a default path value of „/“ if no path was specified.

Before:

`php
$request = $client->get('http://www.foo.com');
echo $request->getUrl();
// >> http://www.foo.com/
`

After:

`php
$request = $client->get('http://www.foo.com');
echo $request->getUrl();
// >> http://www.foo.com
`

Less verbose BadResponseException

The exception message for GuzzleHttpExceptionBadResponseException no longer contains the full HTTP request and
response information. You can, however, get access to the request and response object by calling getRequest() or
getResponse() on the exception object.

Query parameter aggregation

Multi-valued query parameters are no longer aggregated using a callback function. GuzzleHttpQuery now has a
setAggregator() method that accepts a GuzzleHttpQueryAggregatorQueryAggregatorInterface object. This object is
responsible for handling the aggregation of multi-valued query string variables into a flattened hash.

2.8 to 3.x

GuzzleServiceInspector

Change GuzzleServiceInspector::fromConfig to GuzzleCommonCollection::fromConfig

Before

```php
use GuzzleServiceInspector;

class YourClient extends GuzzleServiceClient
{


public static function factory($config = array())
{


$default = array();
$required = array(„base_url“, „username“, „api_key“);
$config = Inspector::fromConfig($config, $default, $required);


	$client = new self(
	$config->get(„base_url“),
$config->get(„username“),
$config->get(„api_key“)





);
$client->setConfig($config);

$client->setDescription(ServiceDescription::factory(__DIR__ . DIRECTORY_SEPARATOR . „client.json“));

return $client;




}




```

After

```php
use GuzzleCommonCollection;

class YourClient extends GuzzleServiceClient
{


public static function factory($config = array())
{


$default = array();
$required = array(„base_url“, „username“, „api_key“);
$config = Collection::fromConfig($config, $default, $required);


	$client = new self(
	$config->get(„base_url“),
$config->get(„username“),
$config->get(„api_key“)





);
$client->setConfig($config);

$client->setDescription(ServiceDescription::factory(__DIR__ . DIRECTORY_SEPARATOR . „client.json“));

return $client;




}




```

Convert XML Service Descriptions to JSON

Before

```xml
<?xml version=»1.0» encoding=»UTF-8»?>
<client>



	<commands>
	<!– Groups –>
<command name=»list_groups» method=»GET» uri=»groups.json»>


<doc>Get a list of groups</doc>




</command>
<command name=»search_groups» method=»GET» uri=“search.json?query=»{{query}} type:group»“>


<doc>Uses a search query to get a list of groups</doc>
<param name=»query» type=»string» required=»true» />




</command>
<command name=»create_group» method=»POST» uri=»groups.json»>


<doc>Create a group</doc>
<param name=»data» type=»array» location=»body» filters=»json_encode» doc=»Group JSON»/>
<param name=»Content-Type» location=»header» static=»application/json»/>




</command>
<command name=»delete_group» method=»DELETE» uri=»groups/{{id}}.json»>


<doc>Delete a group by ID</doc>
<param name=»id» type=»integer» required=»true»/>




</command>
<command name=»get_group» method=»GET» uri=»groups/{{id}}.json»>


<param name=»id» type=»integer» required=»true»/>




</command>
<command name=»update_group» method=»PUT» uri=»groups/{{id}}.json»>


<doc>Update a group</doc>
<param name=»id» type=»integer» required=»true»/>
<param name=»data» type=»array» location=»body» filters=»json_encode» doc=»Group JSON»/>
<param name=»Content-Type» location=»header» static=»application/json»/>




</command>





</commands>




</client>
```

After

```json
{


«name»:       «Zendesk REST API v2»,
«apiVersion»: «2012-12-31»,
«description»:»Provides access to Zendesk views, groups, tickets, ticket fields, and users»,
«operations»: {



	«list_groups»:  {
	«httpMethod»:»GET»,
«uri»:       «groups.json»,
«summary»:   «Get a list of groups»





},
«search_groups»:{


«httpMethod»:»GET»,
«uri»:       «search.json?query="{query} type:group"»,
«summary»:   «Uses a search query to get a list of groups»,
«parameters»:{



	«query»:{
	«location»:   «uri»,
«description»:»Zendesk Search Query»,
«type»:       «string»,
«required»:   true





}




}




},
«create_group»: {


«httpMethod»:»POST»,
«uri»:       «groups.json»,
«summary»:   «Create a group»,
«parameters»:{



	«data»:        {
	«type»:       «array»,
«location»:   «body»,
«description»:»Group JSON»,
«filters»:    «json_encode»,
«required»:   true





},
«Content-Type»:{


«type»:    «string»,
«location»:»header»,
«static»:  «application/json»




}




}




},
«delete_group»: {


«httpMethod»:»DELETE»,
«uri»:       «groups/{id}.json»,
«summary»:   «Delete a group»,
«parameters»:{



	«id»:{
	«location»:   «uri»,
«description»:»Group to delete by ID»,
«type»:       «integer»,
«required»:   true





}




}




},
«get_group»:    {


«httpMethod»:»GET»,
«uri»:       «groups/{id}.json»,
«summary»:   «Get a ticket»,
«parameters»:{



	«id»:{
	«location»:   «uri»,
«description»:»Group to get by ID»,
«type»:       «integer»,
«required»:   true





}




}




},
«update_group»: {


«httpMethod»:»PUT»,
«uri»:       «groups/{id}.json»,
«summary»:   «Update a group»,
«parameters»:{



	«id»:          {
	«location»:   «uri»,
«description»:»Group to update by ID»,
«type»:       «integer»,
«required»:   true





},
«data»:        {


«type»:       «array»,
«location»:   «body»,
«description»:»Group JSON»,
«filters»:    «json_encode»,
«required»:   true




},
«Content-Type»:{


«type»:    «string»,
«location»:»header»,
«static»:  «application/json»




}




}




}








}

### GuzzleServiceDescriptionServiceDescription

Commands are now called Operations

Before

```php
use GuzzleServiceDescriptionServiceDescription;

$sd = new ServiceDescription();
$sd->getCommands(); // @returns ApiCommandInterface[]
$sd->hasCommand($name);
$sd->getCommand($name); // @returns ApiCommandInterface|null
$sd->addCommand($command); // @param ApiCommandInterface $command
```

After

```php
use GuzzleServiceDescriptionServiceDescription;

$sd = new ServiceDescription();
$sd->getOperations(); // @returns OperationInterface[]
$sd->hasOperation($name);
$sd->getOperation($name); // @returns OperationInterface|null
$sd->addOperation($operation); // @param OperationInterface $operation
```

### GuzzleCommonInflectionInflector

Namespace is now GuzzleInflectionInflector

### GuzzleHttpPlugin

Namespace is now GuzzlePlugin. Many other changes occur within this namespace and are detailed in their own sections below.

### GuzzleHttpPluginLogPlugin and GuzzleCommonLog

Now GuzzlePluginLogLogPlugin and GuzzleLog respectively.

Before

```php
use GuzzleCommonLogClosureLogAdapter;
use GuzzleHttpPluginLogPlugin;

/** @var GuzzleHttpClient */
$client;

// $verbosity is an integer indicating desired message verbosity level
$client->addSubscriber(new LogPlugin(new ClosureLogAdapter(function($m) { echo $m; }, $verbosity = LogPlugin::LOG_VERBOSE);
```

After

```php
use GuzzleLogClosureLogAdapter;
use GuzzleLogMessageFormatter;
use GuzzlePluginLogLogPlugin;

/** @var GuzzleHttpClient */
$client;

// $format is a string indicating desired message format – @see MessageFormatter
$client->addSubscriber(new LogPlugin(new ClosureLogAdapter(function($m) { echo $m; }, $format = MessageFormatter::DEBUG_FORMAT);
```

### GuzzleHttpPluginCurlAuthPlugin

Now GuzzlePluginCurlAuthCurlAuthPlugin.

### GuzzleHttpPluginExponentialBackoffPlugin

Now GuzzlePluginBackoffBackoffPlugin, and other changes.

Before

```php
use GuzzleHttpPluginExponentialBackoffPlugin;

	$backoffPlugin = new ExponentialBackoffPlugin($maxRetries, array_merge(
	
ExponentialBackoffPlugin::getDefaultFailureCodes(), array(429)

));

$client->addSubscriber($backoffPlugin);
```

After

```php
use GuzzlePluginBackoffBackoffPlugin;
use GuzzlePluginBackoffHttpBackoffStrategy;

// Use convenient factory method instead – see implementation for ideas of what
// you can do with chaining backoff strategies
$backoffPlugin = BackoffPlugin::getExponentialBackoff($maxRetries, array_merge(

HttpBackoffStrategy::getDefaultFailureCodes(), array(429)

));

$client->addSubscriber($backoffPlugin);
```

### Known Issues

#### [BUG] Accept-Encoding header behavior changed unintentionally.

(See #217) (Fixed in 09daeb8c666fb44499a0646d655a8ae36456575e)

In version 2.8 setting the Accept-Encoding header would set the CURLOPT_ENCODING option, which permitted cURL to
properly handle gzip/deflate compressed responses from the server. In versions affected by this bug this does not happen.
See issue #217 for a workaround, or use a version containing the fix.






            

          

      

      

    

  

    
      
          
            
  # CHANGELOG

## 1.5.1 - 2021-10-22

### Fixed


	Revert «Call handler when waiting on fulfilled/rejected Promise»


	Fix pool memory leak when empty array of promises provided




## 1.5.0 - 2021-10-07

### Changed


	Call handler when waiting on fulfilled/rejected Promise




### Fixed


	Fix manually settle promises generated with Utils::task




## 1.4.1 - 2021-02-18

### Fixed


	Fixed each_limit skipping promises and failing




## 1.4.0 - 2020-09-30

### Added


	Support for PHP 8


	Optional $recursive flag to all


	Replaced functions by static methods




### Fixed


	Fix empty each processing


	Fix promise handling for Iterators of non-unique keys


	Fixed method_exists crashes on PHP 8


	Memory leak on exceptions




## 1.3.1 - 2016-12-20

### Fixed


	wait() foreign promise compatibility




## 1.3.0 - 2016-11-18

### Added


	Adds support for custom task queues.




### Fixed


	Fixed coroutine promise memory leak.




## 1.2.0 - 2016-05-18

### Changed


	Update to now catch Throwable on PHP 7+




## 1.1.0 - 2016-03-07

### Changed


	Update EachPromise to prevent recurring on a iterator when advancing, as this
could trigger fatal generator errors.


	Update Promise to allow recursive waiting without unwrapping exceptions.




## 1.0.3 - 2015-10-15

### Changed


	Update EachPromise to immediately resolve when the underlying promise iterator
is empty. Previously, such a promise would throw an exception when its wait
function was called.




## 1.0.2 - 2015-05-15

### Changed


	Conditionally require functions.php.




## 1.0.1 - 2015-06-24

### Changed


	Updating EachPromise to call next on the underlying promise iterator as late
as possible to ensure that generators that generate new requests based on
callbacks are not iterated until after callbacks are invoked.




## 1.0.0 - 2015-05-12


	Initial release






            

          

      

      

    

  

    
      
          
            
  # Guzzle Promises

[Promises/A+](https://promisesaplus.com/) implementation that handles promise
chaining and resolution iteratively, allowing for «infinite» promise chaining
while keeping the stack size constant. Read [this blog post](https://blog.domenic.me/youre-missing-the-point-of-promises/)
for a general introduction to promises.


	[Features](#features)


	[Quick start](#quick-start)


	[Synchronous wait](#synchronous-wait)


	[Cancellation](#cancellation)


	[API](#api)
- [Promise](#promise)
- [FulfilledPromise](#fulfilledpromise)
- [RejectedPromise](#rejectedpromise)


	[Promise interop](#promise-interop)


	[Implementation notes](#implementation-notes)




# Features


	[Promises/A+](https://promisesaplus.com/) implementation.


	Promise resolution and chaining is handled iteratively, allowing for
«infinite» promise chaining.


	Promises have a synchronous wait method.


	Promises can be cancelled.


	Works with any object that has a then function.


	C# style async/await coroutine promises using
GuzzleHttpPromiseCoroutine::of().




# Quick start

A promise represents the eventual result of an asynchronous operation. The
primary way of interacting with a promise is through its then method, which
registers callbacks to receive either a promise’s eventual value or the reason
why the promise cannot be fulfilled.

## Callbacks

Callbacks are registered with the then method by providing an optional
$onFulfilled followed by an optional $onRejected function.

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$promise->then(

// $onFulfilled
function ($value) {

echo „The promise was fulfilled.“;

},
// $onRejected
function ($reason) {

echo „The promise was rejected.“;

}

);

Resolving a promise means that you either fulfill a promise with a value or
reject a promise with a reason. Resolving a promises triggers callbacks
registered with the promises’s then method. These callbacks are triggered
only once and in the order in which they were added.

Resolving a promise

Promises are fulfilled using the resolve($value) method. Resolving a promise
with any value other than a GuzzleHttpPromiseRejectedPromise will trigger
all of the onFulfilled callbacks (resolving a promise with a rejected promise
will reject the promise and trigger the $onRejected callbacks).

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$promise



	->then(function ($value) {
	// Return a value and don’t break the chain
return «Hello, » . $value;





})
// This then is executed after the first then and receives the value
// returned from the first then.
->then(function ($value) {


echo $value;




});




// Resolving the promise triggers the $onFulfilled callbacks and outputs
// «Hello, reader.»
$promise->resolve(„reader.“);
```

Promise forwarding

Promises can be chained one after the other. Each then in the chain is a new
promise. The return value of a promise is what’s forwarded to the next
promise in the chain. Returning a promise in a then callback will cause the
subsequent promises in the chain to only be fulfilled when the returned promise
has been fulfilled. The next promise in the chain will be invoked with the
resolved value of the promise.

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$nextPromise = new Promise();


	$promise
	
	->then(function ($value) use ($nextPromise) {
	echo $value;
return $nextPromise;





})
->then(function ($value) {


echo $value;




});





// Triggers the first callback and outputs «A»
$promise->resolve(„A“);
// Triggers the second callback and outputs «B»
$nextPromise->resolve(„B“);
```

Promise rejection

When a promise is rejected, the $onRejected callbacks are invoked with the
rejection reason.

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$promise->then(null, function ($reason) {


echo $reason;




});

$promise->reject(„Error!“);
// Outputs «Error!»
```

Rejection forwarding

If an exception is thrown in an $onRejected callback, subsequent
$onRejected callbacks are invoked with the thrown exception as the reason.

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$promise->then(null, function ($reason) {


throw new Exception($reason);





	})->then(null, function ($reason) {
	assert($reason->getMessage() === „Error!“);





});

$promise->reject(„Error!“);
```

You can also forward a rejection down the promise chain by returning a
GuzzleHttpPromiseRejectedPromise in either an $onFulfilled or
$onRejected callback.

```php
use GuzzleHttpPromisePromise;
use GuzzleHttpPromiseRejectedPromise;

$promise = new Promise();
$promise->then(null, function ($reason) {


return new RejectedPromise($reason);





	})->then(null, function ($reason) {
	assert($reason === „Error!“);





});

$promise->reject(„Error!“);
```

If an exception is not thrown in a $onRejected callback and the callback
does not return a rejected promise, downstream $onFulfilled callbacks are
invoked using the value returned from the $onRejected callback.

```php
use GuzzleHttpPromisePromise;

$promise = new Promise();
$promise



	->then(null, function ($reason) {
	return «It’s ok»;





})
->then(function ($value) {


assert($value === «It’s ok»);




});




$promise->reject(„Error!“);
```

Synchronous wait

You can synchronously force promises to complete using a promise’s wait
method. When creating a promise, you can provide a wait function that is used
to synchronously force a promise to complete. When a wait function is invoked
it is expected to deliver a value to the promise or reject the promise. If the
wait function does not deliver a value, then an exception is thrown. The wait
function provided to a promise constructor is invoked when the wait function
of the promise is called.

```php
$promise = new Promise(function () use (&$promise) {


$promise->resolve(„foo“);




});

// Calling wait will return the value of the promise.
echo $promise->wait(); // outputs «foo»
```

If an exception is encountered while invoking the wait function of a promise,
the promise is rejected with the exception and the exception is thrown.

```php
$promise = new Promise(function () use (&$promise) {


throw new Exception(„foo“);




});

$promise->wait(); // throws the exception.
```

Calling wait on a promise that has been fulfilled will not trigger the wait
function. It will simply return the previously resolved value.

`php
$promise = new Promise(function () { die('this is not called!'); });
$promise->resolve('foo');
echo $promise->wait(); // outputs "foo"
`

Calling wait on a promise that has been rejected will throw an exception. If
the rejection reason is an instance of Exception the reason is thrown.
Otherwise, a GuzzleHttpPromiseRejectionException is thrown and the reason
can be obtained by calling the getReason method of the exception.

`php
$promise = new Promise();
$promise->reject('foo');
$promise->wait();
`

> PHP Fatal error: Uncaught exception „GuzzleHttpPromiseRejectionException“ with message „The promise was rejected with value: foo“

Unwrapping a promise

When synchronously waiting on a promise, you are joining the state of the
promise into the current state of execution (i.e., return the value of the
promise if it was fulfilled or throw an exception if it was rejected). This is
called «unwrapping» the promise. Waiting on a promise will by default unwrap
the promise state.

You can force a promise to resolve and not unwrap the state of the promise
by passing false to the first argument of the wait function:

`php
$promise = new Promise();
$promise->reject('foo');
// This will not throw an exception. It simply ensures the promise has
// been resolved.
$promise->wait(false);
`

When unwrapping a promise, the resolved value of the promise will be waited
upon until the unwrapped value is not a promise. This means that if you resolve
promise A with a promise B and unwrap promise A, the value returned by the
wait function will be the value delivered to promise B.

Note: when you do not unwrap the promise, no value is returned.

Cancellation

You can cancel a promise that has not yet been fulfilled using the cancel()
method of a promise. When creating a promise you can provide an optional
cancel function that when invoked cancels the action of computing a resolution
of the promise.

API

Promise

When creating a promise object, you can provide an optional $waitFn and
$cancelFn. $waitFn is a function that is invoked with no arguments and is
expected to resolve the promise. $cancelFn is a function with no arguments
that is expected to cancel the computation of a promise. It is invoked when the
cancel() method of a promise is called.

```php
use GuzzleHttpPromisePromise;


	$promise = new Promise(
	
	function () use (&$promise) {
	$promise->resolve(„waited“);





},
function () {


// do something that will cancel the promise computation (e.g., close
// a socket, cancel a database query, etc…)




}





);

assert(„waited“ === $promise->wait());
```

A promise has the following methods:

	then(callable $onFulfilled, callable $onRejected) : PromiseInterface

Appends fulfillment and rejection handlers to the promise, and returns a new promise resolving to the return value of the called handler.

	otherwise(callable $onRejected) : PromiseInterface

Appends a rejection handler callback to the promise, and returns a new promise resolving to the return value of the callback if it is called, or to its original fulfillment value if the promise is instead fulfilled.

	wait($unwrap = true) : mixed

Synchronously waits on the promise to complete.

$unwrap controls whether or not the value of the promise is returned for a
fulfilled promise or if an exception is thrown if the promise is rejected.
This is set to true by default.

	cancel()

Attempts to cancel the promise if possible. The promise being cancelled and
the parent most ancestor that has not yet been resolved will also be
cancelled. Any promises waiting on the cancelled promise to resolve will also
be cancelled.

	getState() : string

Returns the state of the promise. One of pending, fulfilled, or
rejected.

	resolve($value)

Fulfills the promise with the given $value.

	reject($reason)

Rejects the promise with the given $reason.

FulfilledPromise

A fulfilled promise can be created to represent a promise that has been
fulfilled.

```php
use GuzzleHttpPromiseFulfilledPromise;

$promise = new FulfilledPromise(„value“);

// Fulfilled callbacks are immediately invoked.
$promise->then(function ($value) {


echo $value;






});

## RejectedPromise

A rejected promise can be created to represent a promise that has been
rejected.

```php
use GuzzleHttpPromiseRejectedPromise;

$promise = new RejectedPromise(„Error“);

// Rejected callbacks are immediately invoked.
$promise->then(null, function ($reason) {

echo $reason;

});

Promise interop

This library works with foreign promises that have a then method. This means
you can use Guzzle promises with [React promises](https://github.com/reactphp/promise)
for example. When a foreign promise is returned inside of a then method
callback, promise resolution will occur recursively.

```php
// Create a React promise
$deferred = new ReactPromiseDeferred();
$reactPromise = $deferred->promise();

// Create a Guzzle promise that is fulfilled with a React promise.
$guzzlePromise = new GuzzleHttpPromisePromise();
$guzzlePromise->then(function ($value) use ($reactPromise) {


// Do something something with the value…
// Return the React promise
return $reactPromise;






});

Please note that wait and cancel chaining is no longer possible when forwarding
a foreign promise. You will need to wrap a third-party promise with a Guzzle
promise in order to utilize wait and cancel functions with foreign promises.

## Event Loop Integration

In order to keep the stack size constant, Guzzle promises are resolved
asynchronously using a task queue. When waiting on promises synchronously, the
task queue will be automatically run to ensure that the blocking promise and
any forwarded promises are resolved. When using promises asynchronously in an
event loop, you will need to run the task queue on each tick of the loop. If
you do not run the task queue, then promises will not be resolved.

You can run the task queue using the run() method of the global task queue
instance.

`php
// Get the global task queue
$queue = GuzzleHttp\Promise\Utils::queue();
$queue->run();
`

For example, you could use Guzzle promises with React using a periodic timer:

`php
$loop = React\EventLoop\Factory::create();
$loop->addPeriodicTimer(0, [$queue, 'run']);
`

TODO: Perhaps adding a futureTick() on each tick would be faster?

# Implementation notes

## Promise resolution and chaining is handled iteratively

By shuffling pending handlers from one owner to another, promises are
resolved iteratively, allowing for «infinite» then chaining.

```php
<?php
require „vendor/autoload.php“;

use GuzzleHttpPromisePromise;

$parent = new Promise();
$p = $parent;

	for ($i = 0; $i < 1000; $i++) {
	
	$p = $p->then(function ($v) {
	// The stack size remains constant (a good thing)
echo xdebug_get_stack_depth() . „, „;
return $v + 1;

});

}

$parent->resolve(0);
var_dump($p->wait()); // int(1000)

```

When a promise is fulfilled or rejected with a non-promise value, the promise
then takes ownership of the handlers of each child promise and delivers values
down the chain without using recursion.

When a promise is resolved with another promise, the original promise transfers
all of its pending handlers to the new promise. When the new promise is
eventually resolved, all of the pending handlers are delivered the forwarded
value.

## A promise is the deferred.

Some promise libraries implement promises using a deferred object to represent
a computation and a promise object to represent the delivery of the result of
the computation. This is a nice separation of computation and delivery because
consumers of the promise cannot modify the value that will be eventually
delivered.

One side effect of being able to implement promise resolution and chaining
iteratively is that you need to be able for one promise to reach into the state
of another promise to shuffle around ownership of handlers. In order to achieve
this without making the handlers of a promise publicly mutable, a promise is
also the deferred value, allowing promises of the same parent class to reach
into and modify the private properties of promises of the same type. While this
does allow consumers of the value to modify the resolution or rejection of the
deferred, it is a small price to pay for keeping the stack size constant.

`php
$promise = new Promise();
$promise->then(function ($value) { echo $value; });
// The promise is the deferred value, so you can deliver a value to it.
$promise->resolve('foo');
// prints "foo"
`

## Upgrading from Function API

A static API was first introduced in 1.4.0, in order to mitigate problems with functions conflicting between global and local copies of the package. The function API will be removed in 2.0.0. A migration table has been provided here for your convenience:


Original Function | Replacement Method |



----------------	—————-
queue	Utils::queue
task	Utils::task
promise_for	Create::promiseFor
rejection_for	Create::rejectionFor
exception_for	Create::exceptionFor
iter_for	Create::iterFor
inspect	Utils::inspect
inspect_all	Utils::inspectAll
unwrap	Utils::unwrap
all	Utils::all
some	Utils::some
any	Utils::any
settle	Utils::settle
each	Each::of
each_limit	Each::ofLimit
each_limit_all	Each::ofLimitAll
!is_fulfilled	Is::pending
is_fulfilled	Is::fulfilled
is_rejected	Is::rejected
is_settled	Is::settled
coroutine	Coroutine::of

## Security

If you discover a security vulnerability within this package, please send an email to security@tidelift.com. All security vulnerabilities will be promptly addressed. Please do not disclose security-related issues publicly until a fix has been announced. Please see [Security Policy](https://github.com/guzzle/promises/security/policy) for more information.

## License

Guzzle is made available under the MIT License (MIT). Please see [License File](LICENSE) for more information.

## For Enterprise

Available as part of the Tidelift Subscription

The maintainers of Guzzle and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use. [Learn more.](https://tidelift.com/subscription/pkg/packagist-guzzlehttp-promises?utm_source=packagist-guzzlehttp-promises&utm_medium=referral&utm_campaign=enterprise&utm_term=repo)




            

          

      

      

    

  

    
      
          
            
  # Change Log

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/)
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## Unreleased

## 2.2.1 - 2022-03-20

### Fixed


	Correct header value validation




## 2.2.0 - 2022-03-20

### Added


	A more compressive list of mime types


	Add JsonSerializable to Uri


	Missing return types




### Fixed


	Bug MultipartStream no uri metadata


	Bug MultipartStream with filename for data:// streams


	Fixed new line handling in MultipartStream


	Reduced RAM usage when copying streams


	Updated parsing in Header::normalize()




## 2.1.1 - 2022-03-20

### Fixed


	Validate header values properly




## 2.1.0 - 2021-10-06

### Changed


	Attempting to create a Uri object from a malformed URI will no longer throw a generic
InvalidArgumentException, but rather a MalformedUriException, which inherits from the former
for backwards compatibility. Callers relying on the exception being thrown to detect invalid
URIs should catch the new exception.




### Fixed


	Return null in caching stream size if remote size is null




## 2.0.0 - 2021-06-30

Identical to the RC release.

## 2.0.0@RC-1 - 2021-04-29

### Fixed


	Handle possibly unset url in stream_get_meta_data




## 2.0.0@beta-1 - 2021-03-21

### Added


	PSR-17 factories


	Made classes final


	PHP7 type hints




### Changed


	When building a query string, booleans are represented as 1 and 0.




### Removed


	PHP < 7.2 support


	All functions in the GuzzlePsr7 namespace




## 1.8.1 - 2021-03-21

### Fixed


	Issue parsing IPv6 URLs


	Issue modifying ServerRequest lost all its attributes




## 1.8.0 - 2021-03-21

### Added


	Locale independent URL parsing


	Most classes got a @final annotation to prepare for 2.0




### Fixed


	Issue when creating stream from php://input and curl-ext is not installed


	Broken Utils::tryFopen() on PHP 8




## 1.7.0 - 2020-09-30

### Added


	Replaced functions by static methods




### Fixed


	Converting a non-seekable stream to a string


	Handle multiple Set-Cookie correctly


	Ignore array keys in header values when merging


	Allow multibyte characters to be parsed in Message:bodySummary()




### Changed


	Restored partial HHVM 3 support




## [1.6.1] - 2019-07-02

### Fixed


	Accept null and bool header values again




## [1.6.0] - 2019-06-30

### Added


	Allowed version ^3.0 of ralouphie/getallheaders dependency (#244)


	Added MIME type for WEBP image format (#246)


	Added more validation of values according to PSR-7 and RFC standards, e.g. status code range (#250, #272)




### Changed


	Tests don’t pass with HHVM 4.0, so HHVM support got dropped. Other libraries like composer have done the same. (#262)


	Accept port number 0 to be valid (#270)




### Fixed


	Fixed subsequent reads from php://input in ServerRequest (#247)


	Fixed readable/writable detection for certain stream modes (#248)


	Fixed encoding of special characters in the userInfo component of an URI (#253)




## [1.5.2] - 2018-12-04

### Fixed


	Check body size when getting the message summary




## [1.5.1] - 2018-12-04

### Fixed


	Get the summary of a body only if it is readable




## [1.5.0] - 2018-12-03

### Added


	Response first-line to response string exception (fixes #145)


	A test for #129 behavior


	get_message_body_summary function in order to get the message summary


	3gp and mkv mime types




### Changed


	Clarify exception message when stream is detached




### Deprecated


	Deprecated parsing folded header lines as per RFC 7230




### Fixed


	Fix AppendStream::detach to not close streams


	InflateStream preserves isSeekable attribute of the underlying stream


	ServerRequest::getUriFromGlobals to support URLs in query parameters




Several other fixes and improvements.

## [1.4.2] - 2017-03-20

### Fixed


	Reverted BC break to Uri::resolve and Uri::removeDotSegments by removing
calls to trigger_error when deprecated methods are invoked.




## [1.4.1] - 2017-02-27

### Added


	Rriggering of silenced deprecation warnings.




### Fixed


	Reverted BC break by reintroducing behavior to automagically fix a URI with a
relative path and an authority by adding a leading slash to the path. It’s only
deprecated now.




## [1.4.0] - 2017-02-21

### Added


	Added common URI utility methods based on RFC 3986 (see documentation in the readme):
- Uri::isDefaultPort
- Uri::isAbsolute
- Uri::isNetworkPathReference
- Uri::isAbsolutePathReference
- Uri::isRelativePathReference
- Uri::isSameDocumentReference
- Uri::composeComponents
- UriNormalizer::normalize
- UriNormalizer::isEquivalent
- UriResolver::relativize




### Changed


	Ensure ServerRequest::getUriFromGlobals returns a URI in absolute form.


	Allow parse_response to parse a response without delimiting space and reason.


	Ensure each URI modification results in a valid URI according to PSR-7 discussions.
Invalid modifications will throw an exception instead of returning a wrong URI or
doing some magic.
- (new Uri)->withPath(„foo“)->withHost(„example.com“) will throw an exception


because the path of a URI with an authority must start with a slash «/» or be empty





	(new Uri())->withScheme(„http“) will return „http://localhost“








### Deprecated


	Uri::resolve in favor of UriResolver::resolve


	Uri::removeDotSegments in favor of UriResolver::removeDotSegments




### Fixed


	Stream::read when length parameter <= 0.


	copy_to_stream reads bytes in chunks instead of maxLen into memory.


	ServerRequest::getUriFromGlobals when Host header contains port.


	Compatibility of URIs with file scheme and empty host.




## [1.3.1] - 2016-06-25

### Fixed


	Uri::__toString for network path references, e.g. //example.org.


	Missing lowercase normalization for host.


	Handling of URI components in case they are „0“ in a lot of places,
e.g. as a user info password.


	Uri::withAddedHeader to correctly merge headers with different case.


	Trimming of header values in Uri::withAddedHeader. Header values may
be surrounded by whitespace which should be ignored according to RFC 7230
Section 3.2.4. This does not apply to header names.


	Uri::withAddedHeader with an array of header values.


	Uri::resolve when base path has no slash and handling of fragment.


	Handling of encoding in Uri::with(out)QueryValue so one can pass the
key/value both in encoded as well as decoded form to those methods. This is
consistent with withPath, withQuery etc.


	ServerRequest::withoutAttribute when attribute value is null.




## [1.3.0] - 2016-04-13

### Added


	Remaining interfaces needed for full PSR7 compatibility
(ServerRequestInterface, UploadedFileInterface, etc.).


	Support for stream_for from scalars.




### Changed


	Can now extend Uri.




### Fixed
- A bug in validating request methods by making it more permissive.

## [1.2.3] - 2016-02-18

### Fixed


	Support in GuzzleHttpPsr7CachingStream for seeking forward on remote
streams, which can sometimes return fewer bytes than requested with fread.


	Handling of gzipped responses with FNAME headers.




## [1.2.2] - 2016-01-22

### Added


	Support for URIs without any authority.


	Support for HTTP 451 „Unavailable For Legal Reasons.“


	Support for using „0“ as a filename.


	Support for including non-standard ports in Host headers.




## [1.2.1] - 2015-11-02

### Changes


	Now supporting negative offsets when seeking to SEEK_END.




## [1.2.0] - 2015-08-15

### Changed


	Body as «0» is now properly added to a response.


	Now allowing forward seeking in CachingStream.


	Now properly parsing HTTP requests that contain proxy targets in
parse_request.


	functions.php is now conditionally required.


	user-info is no longer dropped when resolving URIs.




## [1.1.0] - 2015-06-24

### Changed


	URIs can now be relative.


	multipart/form-data headers are now overridden case-insensitively.


	URI paths no longer encode the following characters because they are allowed
in URIs: «(», «)», «*», «!», «“»


	A port is no longer added to a URI when the scheme is missing and no port is
present.




## 1.0.0 - 2015-05-19

Initial release.

Currently unsupported:


	PsrHttpMessageServerRequestInterface


	PsrHttpMessageUploadedFileInterface




[1.6.0]: https://github.com/guzzle/psr7/compare/1.5.2…1.6.0 [https://github.com/guzzle/psr7/compare/1.5.2...1.6.0]
[1.5.2]: https://github.com/guzzle/psr7/compare/1.5.1…1.5.2 [https://github.com/guzzle/psr7/compare/1.5.1...1.5.2]
[1.5.1]: https://github.com/guzzle/psr7/compare/1.5.0…1.5.1 [https://github.com/guzzle/psr7/compare/1.5.0...1.5.1]
[1.5.0]: https://github.com/guzzle/psr7/compare/1.4.2…1.5.0 [https://github.com/guzzle/psr7/compare/1.4.2...1.5.0]
[1.4.2]: https://github.com/guzzle/psr7/compare/1.4.1…1.4.2 [https://github.com/guzzle/psr7/compare/1.4.1...1.4.2]
[1.4.1]: https://github.com/guzzle/psr7/compare/1.4.0…1.4.1 [https://github.com/guzzle/psr7/compare/1.4.0...1.4.1]
[1.4.0]: https://github.com/guzzle/psr7/compare/1.3.1…1.4.0 [https://github.com/guzzle/psr7/compare/1.3.1...1.4.0]
[1.3.1]: https://github.com/guzzle/psr7/compare/1.3.0…1.3.1 [https://github.com/guzzle/psr7/compare/1.3.0...1.3.1]
[1.3.0]: https://github.com/guzzle/psr7/compare/1.2.3…1.3.0 [https://github.com/guzzle/psr7/compare/1.2.3...1.3.0]
[1.2.3]: https://github.com/guzzle/psr7/compare/1.2.2…1.2.3 [https://github.com/guzzle/psr7/compare/1.2.2...1.2.3]
[1.2.2]: https://github.com/guzzle/psr7/compare/1.2.1…1.2.2 [https://github.com/guzzle/psr7/compare/1.2.1...1.2.2]
[1.2.1]: https://github.com/guzzle/psr7/compare/1.2.0…1.2.1 [https://github.com/guzzle/psr7/compare/1.2.0...1.2.1]
[1.2.0]: https://github.com/guzzle/psr7/compare/1.1.0…1.2.0 [https://github.com/guzzle/psr7/compare/1.1.0...1.2.0]
[1.1.0]: https://github.com/guzzle/psr7/compare/1.0.0…1.1.0 [https://github.com/guzzle/psr7/compare/1.0.0...1.1.0]



            

          

      

      

    

  

    
      
          
            
  # PSR-7 Message Implementation

This repository contains a full [PSR-7](http://www.php-fig.org/psr/psr-7/)
message implementation, several stream decorators, and some helpful
functionality like query string parsing.

![CI](https://github.com/guzzle/psr7/workflows/CI/badge.svg)
![Static analysis](https://github.com/guzzle/psr7/workflows/Static%20analysis/badge.svg)

# Stream implementation

This package comes with a number of stream implementations and stream
decorators.

## AppendStream

GuzzleHttpPsr7AppendStream

Reads from multiple streams, one after the other.

```php
use GuzzleHttpPsr7;

$a = Psr7Utils::streamFor(„abc, „);
$b = Psr7Utils::streamFor(„123.“);
$composed = new Psr7AppendStream([$a, $b]);

$composed->addStream(Psr7Utils::streamFor(“ Above all listen to me“));

echo $composed; // abc, 123. Above all listen to me.
```

## BufferStream

GuzzleHttpPsr7BufferStream

Provides a buffer stream that can be written to fill a buffer, and read
from to remove bytes from the buffer.

This stream returns a «hwm» metadata value that tells upstream consumers
what the configured high water mark of the stream is, or the maximum
preferred size of the buffer.

```php
use GuzzleHttpPsr7;

// When more than 1024 bytes are in the buffer, it will begin returning
// false to writes. This is an indication that writers should slow down.
$buffer = new Psr7BufferStream(1024);
```

## CachingStream

The CachingStream is used to allow seeking over previously read bytes on
non-seekable streams. This can be useful when transferring a non-seekable
entity body fails due to needing to rewind the stream (for example, resulting
from a redirect). Data that is read from the remote stream will be buffered in
a PHP temp stream so that previously read bytes are cached first in memory,
then on disk.

```php
use GuzzleHttpPsr7;

$original = Psr7Utils::streamFor(fopen(“http://www.google.com“, „r“));
$stream = new Psr7CachingStream($original);

$stream->read(1024);
echo $stream->tell();
// 1024

$stream->seek(0);
echo $stream->tell();
// 0
```

## DroppingStream

GuzzleHttpPsr7DroppingStream

Stream decorator that begins dropping data once the size of the underlying
stream becomes too full.

```php
use GuzzleHttpPsr7;

// Create an empty stream
$stream = Psr7Utils::streamFor();

// Start dropping data when the stream has more than 10 bytes
$dropping = new Psr7DroppingStream($stream, 10);

$dropping->write(„01234567890123456789“);
echo $stream; // 0123456789
```

## FnStream

GuzzleHttpPsr7FnStream

Compose stream implementations based on a hash of functions.

Allows for easy testing and extension of a provided stream without needing
to create a concrete class for a simple extension point.

```php

use GuzzleHttpPsr7;

$stream = Psr7Utils::streamFor(„hi“);
$fnStream = Psr7FnStream::decorate($stream, [

	„rewind“ => function () use ($stream) {
	echo „About to rewind - „;
$stream->rewind();
echo „rewound!“;

}

]);

$fnStream->rewind();
// Outputs: About to rewind - rewound!
```

## InflateStream

GuzzleHttpPsr7InflateStream

Uses PHP’s zlib.inflate filter to inflate zlib (HTTP deflate, RFC1950) or gzipped (RFC1952) content.

This stream decorator converts the provided stream to a PHP stream resource,
then appends the zlib.inflate filter. The stream is then converted back
to a Guzzle stream resource to be used as a Guzzle stream.

## LazyOpenStream

GuzzleHttpPsr7LazyOpenStream

Lazily reads or writes to a file that is opened only after an IO operation
take place on the stream.

```php
use GuzzleHttpPsr7;

$stream = new Psr7LazyOpenStream(„/path/to/file“, „r“);
// The file has not yet been opened…

echo $stream->read(10);
// The file is opened and read from only when needed.
```

## LimitStream

GuzzleHttpPsr7LimitStream

LimitStream can be used to read a subset or slice of an existing stream object.
This can be useful for breaking a large file into smaller pieces to be sent in
chunks (e.g. Amazon S3’s multipart upload API).

```php
use GuzzleHttpPsr7;

$original = Psr7Utils::streamFor(fopen(„/tmp/test.txt“, „r+“));
echo $original->getSize();
// >>> 1048576

// Limit the size of the body to 1024 bytes and start reading from byte 2048
$stream = new Psr7LimitStream($original, 1024, 2048);
echo $stream->getSize();
// >>> 1024
echo $stream->tell();
// >>> 0
```

## MultipartStream

GuzzleHttpPsr7MultipartStream

Stream that when read returns bytes for a streaming multipart or
multipart/form-data stream.

## NoSeekStream

GuzzleHttpPsr7NoSeekStream

NoSeekStream wraps a stream and does not allow seeking.

```php
use GuzzleHttpPsr7;

$original = Psr7Utils::streamFor(„foo“);
$noSeek = new Psr7NoSeekStream($original);

echo $noSeek->read(3);
// foo
var_export($noSeek->isSeekable());
// false
$noSeek->seek(0);
var_export($noSeek->read(3));
// NULL
```

## PumpStream

GuzzleHttpPsr7PumpStream

Provides a read only stream that pumps data from a PHP callable.

When invoking the provided callable, the PumpStream will pass the amount of
data requested to read to the callable. The callable can choose to ignore
this value and return fewer or more bytes than requested. Any extra data
returned by the provided callable is buffered internally until drained using
the read() function of the PumpStream. The provided callable MUST return
false when there is no more data to read.

## Implementing stream decorators

Creating a stream decorator is very easy thanks to the
GuzzleHttpPsr7StreamDecoratorTrait. This trait provides methods that
implement PsrHttpMessageStreamInterface by proxying to an underlying
stream. Just use the StreamDecoratorTrait and implement your custom
methods.

For example, let’s say we wanted to call a specific function each time the last
byte is read from a stream. This could be implemented by overriding the
read() method.

```php
use PsrHttpMessageStreamInterface;
use GuzzleHttpPsr7StreamDecoratorTrait;

class EofCallbackStream implements StreamInterface
{

use StreamDecoratorTrait;

private $callback;

public function __construct(StreamInterface $stream, callable $cb)
{

$this->stream = $stream;
$this->callback = $cb;

}

public function read($length)
{

$result = $this->stream->read($length);

// Invoke the callback when EOF is hit.
if ($this->eof()) {

call_user_func($this->callback);

}

return $result;

}

}

This decorator could be added to any existing stream and used like so:

```php
use GuzzleHttpPsr7;

$original = Psr7Utils::streamFor(„foo“);


	$eofStream = new EofCallbackStream($original, function () {
	echo „EOF!“;





});

$eofStream->read(2);
$eofStream->read(1);
// echoes «EOF!»
$eofStream->seek(0);
$eofStream->read(3);
// echoes «EOF!»
```

PHP StreamWrapper

You can use the GuzzleHttpPsr7StreamWrapper class if you need to use a
PSR-7 stream as a PHP stream resource.

Use the GuzzleHttpPsr7StreamWrapper::getResource() method to create a PHP
stream from a PSR-7 stream.

```php
use GuzzleHttpPsr7StreamWrapper;

$stream = GuzzleHttpPsr7Utils::streamFor(„hello!“);
$resource = StreamWrapper::getResource($stream);
echo fread($resource, 6); // outputs hello!
```

Static API

There are various static methods available under the GuzzleHttpPsr7 namespace.

GuzzleHttpPsr7Message::toString

public static function toString(MessageInterface $message): string

Returns the string representation of an HTTP message.

`php
$request = new GuzzleHttp\Psr7\Request('GET', 'http://example.com');
echo GuzzleHttp\Psr7\Message::toString($request);
`

GuzzleHttpPsr7Message::bodySummary

public static function bodySummary(MessageInterface $message, int $truncateAt = 120): string|null

Get a short summary of the message body.

Will return null if the response is not printable.

GuzzleHttpPsr7Message::rewindBody

public static function rewindBody(MessageInterface $message): void

Attempts to rewind a message body and throws an exception on failure.

The body of the message will only be rewound if a call to tell()
returns a value other than 0.

GuzzleHttpPsr7Message::parseMessage

public static function parseMessage(string $message): array

Parses an HTTP message into an associative array.

The array contains the «start-line» key containing the start line of
the message, «headers» key containing an associative array of header
array values, and a «body» key containing the body of the message.

GuzzleHttpPsr7Message::parseRequestUri

public static function parseRequestUri(string $path, array $headers): string

Constructs a URI for an HTTP request message.

GuzzleHttpPsr7Message::parseRequest

public static function parseRequest(string $message): Request

Parses a request message string into a request object.

GuzzleHttpPsr7Message::parseResponse

public static function parseResponse(string $message): Response

Parses a response message string into a response object.

GuzzleHttpPsr7Header::parse

public static function parse(string|array $header): array

Parse an array of header values containing «;» separated data into an
array of associative arrays representing the header key value pair data
of the header. When a parameter does not contain a value, but just
contains a key, this function will inject a key with a „“ string value.

GuzzleHttpPsr7Header::normalize

public static function normalize(string|array $header): array

Converts an array of header values that may contain comma separated
headers into an array of headers with no comma separated values.

GuzzleHttpPsr7Query::parse

public static function parse(string $str, int|bool $urlEncoding = true): array

Parse a query string into an associative array.

If multiple values are found for the same key, the value of that key
value pair will become an array. This function does not parse nested
PHP style arrays into an associative array (e.g., foo[a]=1&foo[b]=2
will be parsed into [„foo[a]“ => „1“, „foo[b]“ => „2“]).

GuzzleHttpPsr7Query::build

public static function build(array $params, int|false $encoding = PHP_QUERY_RFC3986): string

Build a query string from an array of key value pairs.

This function can use the return value of parse() to build a query
string. This function does not modify the provided keys when an array is
encountered (like http_build_query() would).

GuzzleHttpPsr7Utils::caselessRemove

public static function caselessRemove(iterable<string> $keys, $keys, array $data): array

Remove the items given by the keys, case insensitively from the data.

GuzzleHttpPsr7Utils::copyToStream

public static function copyToStream(StreamInterface $source, StreamInterface $dest, int $maxLen = -1): void

Copy the contents of a stream into another stream until the given number
of bytes have been read.

GuzzleHttpPsr7Utils::copyToString

public static function copyToString(StreamInterface $stream, int $maxLen = -1): string

Copy the contents of a stream into a string until the given number of
bytes have been read.

GuzzleHttpPsr7Utils::hash

public static function hash(StreamInterface $stream, string $algo, bool $rawOutput = false): string

Calculate a hash of a stream.

This method reads the entire stream to calculate a rolling hash, based on
PHP’s hash_init functions.

GuzzleHttpPsr7Utils::modifyRequest

public static function modifyRequest(RequestInterface $request, array $changes): RequestInterface

Clone and modify a request with the given changes.

This method is useful for reducing the number of clones needed to mutate
a message.

	method: (string) Changes the HTTP method.

	set_headers: (array) Sets the given headers.

	remove_headers: (array) Remove the given headers.

	body: (mixed) Sets the given body.

	uri: (UriInterface) Set the URI.

	query: (string) Set the query string value of the URI.

	version: (string) Set the protocol version.

GuzzleHttpPsr7Utils::readLine

public static function readLine(StreamInterface $stream, int $maxLength = null): string

Read a line from the stream up to the maximum allowed buffer length.

GuzzleHttpPsr7Utils::streamFor

public static function streamFor(resource|string|null|int|float|bool|StreamInterface|callable|Iterator $resource = „“, array $options = []): StreamInterface

Create a new stream based on the input type.

Options is an associative array that can contain the following keys:

	metadata: Array of custom metadata.

	size: Size of the stream.

This method accepts the following $resource types:

	PsrHttpMessageStreamInterface: Returns the value as-is.

	string: Creates a stream object that uses the given string as the contents.

	resource: Creates a stream object that wraps the given PHP stream resource.

	Iterator: If the provided value implements Iterator, then a read-only
stream object will be created that wraps the given iterable. Each time the
stream is read from, data from the iterator will fill a buffer and will be
continuously called until the buffer is equal to the requested read size.
Subsequent read calls will first read from the buffer and then call next
on the underlying iterator until it is exhausted.

	object with __toString(): If the object has the __toString() method,
the object will be cast to a string and then a stream will be returned that
uses the string value.

	NULL: When null is passed, an empty stream object is returned.

	callable When a callable is passed, a read-only stream object will be
created that invokes the given callable. The callable is invoked with the
number of suggested bytes to read. The callable can return any number of
bytes, but MUST return false when there is no more data to return. The
stream object that wraps the callable will invoke the callable until the
number of requested bytes are available. Any additional bytes will be
buffered and used in subsequent reads.


```php
$stream = GuzzleHttpPsr7Utils::streamFor(„foo“);
$stream = GuzzleHttpPsr7Utils::streamFor(fopen(„/path/to/file“, „r“));


	$generator = function ($bytes) {
	
	for ($i = 0; $i < $bytes; $i++) {
	yield „ „;





}





}

$stream = GuzzleHttpPsr7Utils::streamFor($generator(100));
```

GuzzleHttpPsr7Utils::tryFopen

public static function tryFopen(string $filename, string $mode): resource

Safely opens a PHP stream resource using a filename.

When fopen fails, PHP normally raises a warning. This function adds an
error handler that checks for errors and throws an exception instead.

GuzzleHttpPsr7Utils::uriFor

public static function uriFor(string|UriInterface $uri): UriInterface

Returns a UriInterface for the given value.

This function accepts a string or UriInterface and returns a
UriInterface for the given value. If the value is already a
UriInterface, it is returned as-is.

GuzzleHttpPsr7MimeType::fromFilename

public static function fromFilename(string $filename): string|null

Determines the mimetype of a file by looking at its extension.

GuzzleHttpPsr7MimeType::fromExtension

public static function fromExtension(string $extension): string|null

Maps a file extensions to a mimetype.

Upgrading from Function API

The static API was first introduced in 1.7.0, in order to mitigate problems with functions conflicting between global and local copies of the package. The function API was removed in 2.0.0. A migration table has been provided here for your convenience:

Original Function | Replacement Method |

----------------	—————-
str	Message::toString
uri_for	Utils::uriFor
stream_for	Utils::streamFor
parse_header	Header::parse
normalize_header	Header::normalize
modify_request	Utils::modifyRequest
rewind_body	Message::rewindBody
try_fopen	Utils::tryFopen
copy_to_string	Utils::copyToString
copy_to_stream	Utils::copyToStream
hash	Utils::hash
readline	Utils::readLine
parse_request	Message::parseRequest
parse_response	Message::parseResponse
parse_query	Query::parse
build_query	Query::build
mimetype_from_filename	MimeType::fromFilename
mimetype_from_extension	MimeType::fromExtension
_parse_message	Message::parseMessage
_parse_request_uri	Message::parseRequestUri
get_message_body_summary	Message::bodySummary
_caseless_remove	Utils::caselessRemove

Additional URI Methods

Aside from the standard PsrHttpMessageUriInterface implementation in form of the GuzzleHttpPsr7Uri class,
this library also provides additional functionality when working with URIs as static methods.

URI Types

An instance of PsrHttpMessageUriInterface can either be an absolute URI or a relative reference.
An absolute URI has a scheme. A relative reference is used to express a URI relative to another URI,
the base URI. Relative references can be divided into several forms according to
[RFC 3986 Section 4.2](https://tools.ietf.org/html/rfc3986#section-4.2):

	network-path references, e.g. //example.com/path

	absolute-path references, e.g. /path

	relative-path references, e.g. subpath

The following methods can be used to identify the type of the URI.

GuzzleHttpPsr7Uri::isAbsolute

public static function isAbsolute(UriInterface $uri): bool

Whether the URI is absolute, i.e. it has a scheme.

GuzzleHttpPsr7Uri::isNetworkPathReference

public static function isNetworkPathReference(UriInterface $uri): bool

Whether the URI is a network-path reference. A relative reference that begins with two slash characters is
termed an network-path reference.

GuzzleHttpPsr7Uri::isAbsolutePathReference

public static function isAbsolutePathReference(UriInterface $uri): bool

Whether the URI is a absolute-path reference. A relative reference that begins with a single slash character is
termed an absolute-path reference.

GuzzleHttpPsr7Uri::isRelativePathReference

public static function isRelativePathReference(UriInterface $uri): bool

Whether the URI is a relative-path reference. A relative reference that does not begin with a slash character is
termed a relative-path reference.

GuzzleHttpPsr7Uri::isSameDocumentReference

public static function isSameDocumentReference(UriInterface $uri, UriInterface $base = null): bool

Whether the URI is a same-document reference. A same-document reference refers to a URI that is, aside from its
fragment component, identical to the base URI. When no base URI is given, only an empty URI reference
(apart from its fragment) is considered a same-document reference.

URI Components

Additional methods to work with URI components.

GuzzleHttpPsr7Uri::isDefaultPort

public static function isDefaultPort(UriInterface $uri): bool

Whether the URI has the default port of the current scheme. PsrHttpMessageUriInterface::getPort may return null
or the standard port. This method can be used independently of the implementation.

GuzzleHttpPsr7Uri::composeComponents

public static function composeComponents($scheme, $authority, $path, $query, $fragment): string

Composes a URI reference string from its various components according to
[RFC 3986 Section 5.3](https://tools.ietf.org/html/rfc3986#section-5.3). Usually this method does not need to be called
manually but instead is used indirectly via PsrHttpMessageUriInterface::__toString.

GuzzleHttpPsr7Uri::fromParts

public static function fromParts(array $parts): UriInterface

Creates a URI from a hash of [parse_url](http://php.net/manual/en/function.parse-url.php) components.

GuzzleHttpPsr7Uri::withQueryValue

public static function withQueryValue(UriInterface $uri, $key, $value): UriInterface

Creates a new URI with a specific query string value. Any existing query string values that exactly match the
provided key are removed and replaced with the given key value pair. A value of null will set the query string
key without a value, e.g. «key» instead of «key=value».

GuzzleHttpPsr7Uri::withQueryValues

public static function withQueryValues(UriInterface $uri, array $keyValueArray): UriInterface

Creates a new URI with multiple query string values. It has the same behavior as withQueryValue() but for an
associative array of key => value.

GuzzleHttpPsr7Uri::withoutQueryValue

public static function withoutQueryValue(UriInterface $uri, $key): UriInterface

Creates a new URI with a specific query string value removed. Any existing query string values that exactly match the
provided key are removed.

Reference Resolution

GuzzleHttpPsr7UriResolver provides methods to resolve a URI reference in the context of a base URI according
to [RFC 3986 Section 5](https://tools.ietf.org/html/rfc3986#section-5). This is for example also what web browsers
do when resolving a link in a website based on the current request URI.

GuzzleHttpPsr7UriResolver::resolve

public static function resolve(UriInterface $base, UriInterface $rel): UriInterface

Converts the relative URI into a new URI that is resolved against the base URI.

GuzzleHttpPsr7UriResolver::removeDotSegments

public static function removeDotSegments(string $path): string

Removes dot segments from a path and returns the new path according to
[RFC 3986 Section 5.2.4](https://tools.ietf.org/html/rfc3986#section-5.2.4).

GuzzleHttpPsr7UriResolver::relativize

public static function relativize(UriInterface $base, UriInterface $target): UriInterface

Returns the target URI as a relative reference from the base URI. This method is the counterpart to resolve():

`php
(string) $target === (string) UriResolver::resolve($base, UriResolver::relativize($base, $target))
`

One use-case is to use the current request URI as base URI and then generate relative links in your documents
to reduce the document size or offer self-contained downloadable document archives.

`php
$base = new Uri('http://example.com/a/b/');
echo UriResolver::relativize($base, new Uri('http://example.com/a/b/c')); // prints 'c'.
echo UriResolver::relativize($base, new Uri('http://example.com/a/x/y')); // prints '../x/y'.
echo UriResolver::relativize($base, new Uri('http://example.com/a/b/?q')); // prints '?q'.
echo UriResolver::relativize($base, new Uri('http://example.org/a/b/')); // prints '//example.org/a/b/'.
`

Normalization and Comparison

GuzzleHttpPsr7UriNormalizer provides methods to normalize and compare URIs according to
[RFC 3986 Section 6](https://tools.ietf.org/html/rfc3986#section-6).

GuzzleHttpPsr7UriNormalizer::normalize

public static function normalize(UriInterface $uri, $flags = self::PRESERVING_NORMALIZATIONS): UriInterface

Returns a normalized URI. The scheme and host component are already normalized to lowercase per PSR-7 UriInterface.
This methods adds additional normalizations that can be configured with the $flags parameter which is a bitmask
of normalizations to apply. The following normalizations are available:

	UriNormalizer::PRESERVING_NORMALIZATIONS

Default normalizations which only include the ones that preserve semantics.

	UriNormalizer::CAPITALIZE_PERCENT_ENCODING

All letters within a percent-encoding triplet (e.g., «%3A») are case-insensitive, and should be capitalized.

Example: http://example.org/a%c2%b1b → http://example.org/a%C2%B1b

	UriNormalizer::DECODE_UNRESERVED_CHARACTERS

Decodes percent-encoded octets of unreserved characters. For consistency, percent-encoded octets in the ranges of
ALPHA (%41–%5A and %61–%7A), DIGIT (%30–%39), hyphen (%2D), period (%2E), underscore (%5F), or tilde (%7E) should
not be created by URI producers and, when found in a URI, should be decoded to their corresponding unreserved
characters by URI normalizers.

Example: http://example.org/%7Eusern%61me/ → http://example.org/~username/

	UriNormalizer::CONVERT_EMPTY_PATH

Converts the empty path to «/» for http and https URIs.

Example: http://example.org → http://example.org/

	UriNormalizer::REMOVE_DEFAULT_HOST

Removes the default host of the given URI scheme from the URI. Only the «file» scheme defines the default host
«localhost». All of file:/myfile, file:///myfile, and file://localhost/myfile are equivalent according to
RFC 3986.

Example: file://localhost/myfile → file:///myfile

	UriNormalizer::REMOVE_DEFAULT_PORT

Removes the default port of the given URI scheme from the URI.

Example: http://example.org:80/ → http://example.org/

	UriNormalizer::REMOVE_DOT_SEGMENTS

Removes unnecessary dot-segments. Dot-segments in relative-path references are not removed as it would
change the semantics of the URI reference.

Example: http://example.org/../a/b/../c/./d.html → http://example.org/a/c/d.html

	UriNormalizer::REMOVE_DUPLICATE_SLASHES

Paths which include two or more adjacent slashes are converted to one. Webservers usually ignore duplicate slashes
and treat those URIs equivalent. But in theory those URIs do not need to be equivalent. So this normalization
may change the semantics. Encoded slashes (%2F) are not removed.

Example: http://example.org//foo///bar.html → http://example.org/foo/bar.html

	UriNormalizer::SORT_QUERY_PARAMETERS

Sort query parameters with their values in alphabetical order. However, the order of parameters in a URI may be
significant (this is not defined by the standard). So this normalization is not safe and may change the semantics
of the URI.

Example: ?lang=en&article=fred → ?article=fred&lang=en

GuzzleHttpPsr7UriNormalizer::isEquivalent

public static function isEquivalent(UriInterface $uri1, UriInterface $uri2, $normalizations = self::PRESERVING_NORMALIZATIONS): bool

Whether two URIs can be considered equivalent. Both URIs are normalized automatically before comparison with the given
$normalizations bitmask. The method also accepts relative URI references and returns true when they are equivalent.
This of course assumes they will be resolved against the same base URI. If this is not the case, determination of
equivalence or difference of relative references does not mean anything.

Security

If you discover a security vulnerability within this package, please send an email to security@tidelift.com. All security vulnerabilities will be promptly addressed. Please do not disclose security-related issues publicly until a fix has been announced. Please see [Security Policy](https://github.com/guzzle/psr7/security/policy) for more information.

License

Guzzle is made available under the MIT License (MIT). Please see [License File](LICENSE) for more information.

For Enterprise

Available as part of the Tidelift Subscription

The maintainers of Guzzle and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use. [Learn more.](https://tidelift.com/subscription/pkg/packagist-guzzlehttp-psr7?utm_source=packagist-guzzlehttp-psr7&utm_medium=referral&utm_campaign=enterprise&utm_term=repo)

 # Changelog

All notable changes to this project will be documented in this file, in reverse chronological order by release.

1.0.1

Allow installation with PHP 8. No code changes.

1.0.0

First stable release. No changes since 0.3.0.

0.3.0

Added Interface suffix on exceptions

0.2.0

All exceptions are in PsrHttpClient namespace

0.1.0

First release

HTTP Client

This repository holds all the common code related to [PSR-18 (HTTP Client)][psr-url].

Note that this is not a HTTP Client implementation of its own. It is merely abstractions that describe the components of a HTTP Client.

The installable [package][package-url] and [implementations][implementation-url] are listed on Packagist.

[psr-url]: http://www.php-fig.org/psr/psr-18
[package-url]: https://packagist.org/packages/psr/http-client
[implementation-url]: https://packagist.org/providers/psr/http-client-implementation

HTTP Factories

This repository holds all interfaces related to [PSR-17 (HTTP Message Factories)][psr-17].
Please refer to the specification for a description.

You can find implementations of the specification by looking for packages providing the
[psr/http-factory-implementation](https://packagist.org/providers/psr/http-factory-implementation) virtual package.

[psr-17]: https://www.php-fig.org/psr/psr-17/

 # Changelog

All notable changes to this project will be documented in this file, in reverse chronological order by release.

1.0.1 - 2016-08-06

Added

	Nothing.

Deprecated

	Nothing.

Removed

	Nothing.

Fixed

	Updated all @return self annotation references in interfaces to use
@return static, which more closelly follows the semantics of the
specification.

	Updated the MessageInterface::getHeaders() return annotation to use the
value string[][], indicating the format is a nested array of strings.

	Updated the @link annotation for RequestInterface::withRequestTarget()
to point to the correct section of RFC 7230.

	Updated the ServerRequestInterface::withUploadedFiles() parameter annotation
to add the parameter name ($uploadedFiles).

	Updated a @throws annotation for the UploadedFileInterface::moveTo()
method to correctly reference the method parameter (it was referencing an
incorrect parameter name previously).

1.0.0 - 2016-05-18

Initial stable release; reflects accepted PSR-7 specification.

PSR Http Message

This repository holds all interfaces/classes/traits related to
[PSR-7](http://www.php-fig.org/psr/psr-7/).

Note that this is not a HTTP message implementation of its own. It is merely an
interface that describes a HTTP message. See the specification for more details.

Usage

We’ll certainly need some stuff in here.

getallheaders

PHP getallheaders() polyfill. Compatible with PHP >= 5.3.

[![Build Status](https://travis-ci.org/ralouphie/getallheaders.svg?branch=master)](https://travis-ci.org/ralouphie/getallheaders)
[![Coverage Status](https://coveralls.io/repos/ralouphie/getallheaders/badge.png?branch=master)](https://coveralls.io/r/ralouphie/getallheaders?branch=master)
[![Latest Stable Version](https://poser.pugx.org/ralouphie/getallheaders/v/stable.png)](https://packagist.org/packages/ralouphie/getallheaders)
[![Latest Unstable Version](https://poser.pugx.org/ralouphie/getallheaders/v/unstable.png)](https://packagist.org/packages/ralouphie/getallheaders)
[![License](https://poser.pugx.org/ralouphie/getallheaders/license.png)](https://packagist.org/packages/ralouphie/getallheaders)

This is a simple polyfill for [getallheaders()](http://www.php.net/manual/en/function.getallheaders.php).

Install

For PHP version `>= 5.6`:

`
composer require ralouphie/getallheaders
`

For PHP version `< 5.6`:

`
composer require ralouphie/getallheaders "^2"
`

CHANGELOG

The changelog is maintained for all Symfony contracts at the following URL:
https://github.com/symfony/contracts/blob/main/CHANGELOG.md

Symfony Deprecation Contracts

A generic function and convention to trigger deprecation notices.

This package provides a single global function named trigger_deprecation() that triggers silenced deprecation notices.

By using a custom PHP error handler such as the one provided by the Symfony ErrorHandler component,
the triggered deprecations can be caught and logged for later discovery, both on dev and prod environments.

	The function requires at least 3 arguments:
	
	the name of the Composer package that is triggering the deprecation

	the version of the package that introduced the deprecation

	the message of the deprecation

	more arguments can be provided: they will be inserted in the message using printf() formatting

Example:
`php
trigger_deprecation('symfony/blockchain', '8.9', 'Using "%s" is deprecated, use "%s" instead.', 'bitcoin', 'fabcoin');
`

This will generate the following message:
Since symfony/blockchain 8.9: Using «bitcoin» is deprecated, use «fabcoin» instead.

While not necessarily recommended, the deprecation notices can be completely ignored by declaring an empty
function trigger_deprecation() {} in your application.

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

